Course 311: Michaelmas Term 1999 Part II: Topics in Group Theory

D. R. Wilkins
Copyright © David R. Wilkins 1997

Contents

2 Topics in Group Theory 2
2.1 Groups 2
2.2 Examples of Groups 3
2.3 Cayley Tables 4
2.4 Elementary Properties of Groups 5
2.5 The General Associative Law 6
2.6 Subgroups 8
2.7 Cyclic Groups 9
2.8 Cosets and Lagrange's Theorem 11
2.9 Normal Subgroups and Quotient Groups 12
2.10 Homomorphisms 16
2.11 The Isomorphism Theorems 18
2.12 Direct products of groups 19
2.13 Cayley's Theorem 20
2.14 Group Actions, Orbits and Stabilizers 21
2.15 Conjugacy 21
2.16 Permutations and the Symmetric Groups 22
2.17 The Alternating Groups 26
2.18 Normal Subgroups of the Symmetric Groups 29
2.19 Finitely Generated Abelian Groups 30
2.20 The Class Equation of a Finite Group 33
2.21 Cauchy's Theorem 34
2.22 The Structure of p-Groups 34
2.23 The Sylow Theorems 35
2.24 Solvable Groups 37

2 Topics in Group Theory

2.1 Groups

A binary operation $*$ on a set G associates to elements x and y of G a third element $x * y$ of G. For example, addition and multiplication are binary operations of the set of all integers.

Definition A group G consists of a set G together with a binary operation * for which the following properties are satisfied:

- $(x * y) * z=x *(y * z)$ for all elements x, y, and z of G (the Associative Law);
- there exists an element e of G (known as the identity element of G) such that $e * x=x=x * e$, for all elements x of G;
- for each element x of G there exists an element x^{\prime} of G (known as the inverse of x) such that $x * x^{\prime}=e=x^{\prime} * x$ (where e is the identity element of G).

The order $|G|$ of a finite group G is the number of elements of G.
A group G is Abelian (or commutative) if $x * y=y * x$ for all elements x and y of G.

One usually adopts multiplicative notation for groups, where the product $x * y$ of two elements x and y of a group G is denoted by $x y$. The inverse of an element x of G is then denoted by x^{-1}. The identity element is usually denoted by e (or by e_{G} when it is necessary to specify explicitly the group to which it belongs). Sometimes the identity element is denoted by 1 . Thus, when multiplicative notation is adopted, the group axioms are written as follows:-

- $(x y) z=x(y z)$ for all elements x, y, and z of G (the Associative Law);
- there exists an element e of G (known as the identity element of G) such that $e x=x=x e$, for all elements x of G;
- for each element x of G there exists an element x^{-1} of G (known as the inverse of x) such that $x x^{-1}=e=x^{-1} x$ (where e is the identity element of G).

The group G is said to be Abelian (or commutative) if $x y=y x$ for all elements x and y of G.

It is sometimes convenient or customary to use additive notation for certain groups. Here the group operation is denoted by + , the identity element of the group is denoted by 0 , the inverse of an element x of the group is denoted by $-x$. By convention, additive notation is only used for Abelian groups. When expressed in additive notation the axioms for a Abelian group are as follows:

- $x+y=y+x$ for all elements x and y of G (the Commutative Law);
- $(x+y)+z=x+(y+z)$ for all elements x, y, and z of G (the Associative Law);
- there exists an element 0 of G (known as the identity element or zero element of G) such that $0+x=x=x+0$, for all elements x of G;
- for each element x of G there exists an element $-x$ of G (known as the inverse of x) such that $x+(-x)=0=(-x)+x$ (where 0 is the identity element of G).

We shall usually employ multiplicative notation when discussing general properties of groups. Additive notation will be employed for certain groups (such as the set of integers with the operation of addition) where this notation is the natural one to use.

2.2 Examples of Groups

The sets of integers, rational numbers, real numbers and complex numbers are Abelian groups, where the group operation is the operation of addition.

The sets of non-zero rational numbers, non-zero real numbers and nonzero complex numbers are also Abelian groups, where the group operation is the operation of multiplication.

For each positive integer m the set \mathbb{Z}_{m} of congruence classes of integers modulo m is a group, where the group operation is addition of congruence classes.

For each positive integer m the set \mathbb{Z}_{m}^{*} of congruence classes modulo m of integers coprime to m is a group, where the group operation is multiplication of congruence classes.

In particular, for each prime number p the set \mathbb{Z}_{p}^{*} of congruence classes modulo p of integers not divisible by p is a group, where the group operation is multiplication of congruence classes.

For each positive integer n the set of all nonsingular $n \times n$ matrices is a group, where the group operation is matrix multiplication. These groups are not Abelian when $n \geq 2$.

The set of all transformations of the plane that are of the form

$$
(x, y) \mapsto(a x+b y, c x+d y)
$$

with $a d-b c \neq 0$ is a group with respect to the operation of composition of transformations. This group includes all rotations about the origin, and all reflections in lines passing through the origin. It is not Abelian.

Consider a regular n-sided polygon centered at the origin. The symmetries of this polygon (i.e., length- and angle-preserving transformations of the plane that map this polygon onto itself) are rotations about the origin through an integer multiple of $2 \pi / n$ radians, and reflections in the n axes of symmetry of the polygon. The symmetries of the polygon constitute a group of order $2 n$. This group is referred to as the dihedral group of order $2 n$.

The symmetries of a rectangle that is not a square constitute a group of order 4. This group consists of the identity transformation, reflection in the axis of symmetry joining the midpoints of the two shorter sides, reflection in the axis of symmetry joining the two longer sides, and rotation though an angle of π radians $\left(180^{\circ}\right)$. If I denotes the identity transformation, A and B denote the reflections in the two axes of symmetry, and C denotes the rotation through π radians then $A^{2}=B^{2}=C^{2}=I, A B=B A=C$, $A C=C A=B$ and $B C=C B=A$. This group is Abelian: it is often referred to as the Klein 4 -group (or, in German, Kleinsche Viergruppe).

The symmetries of a regular tetrahedron in 3-dimensional space constitute a group. Any permutation of the vertices of the tetrahedron can be effected by an appropriate symmetry of the tetrahedron. Moreover each symmetry is completely determined by the permutation of the vertices which it induces. Therefore the group of symmetries of a regular tetrahedron is of order 24, since there are 24 permutations of a set with four elements. It turns out that this group is non-Abelian.

2.3 Cayley Tables

The algebraic structure of a finite group can be exhibited using a Cayley table, provided that the number of elements in the group is sufficiently small. The rows and columns of the Cayley table are labelled by the elements of the group, and each entry in the table is the product $x y$ of the element x labelling its row with the element y labelling its column.
Example Let D_{6} be the group of symmetries of an equilateral triangle with vertices labelled A, B and C in anticlockwise order. The elements of D_{6}
consist of the identity transformation \mathbf{I}, an anticlockwise rotation \mathbf{R} about the centre through an angle of $2 \pi / 3$ radians (i.e., 120°), a clockwise rotation \mathbf{S} about the centre through an angle of $2 \pi / 3$ radians, and reflections \mathbf{U}, \mathbf{V} and \mathbf{W} in the lines joining the vertices A, B and C respectively to the midpoints of the opposite edges. Calculating the compositions of these rotations, we obtain the following Cayley table:

	I	R	S	U	V	W
I	I	R	S	U	V	W
R	R	S	I	W	U	V
S	S	I	R	V	W	U
U	U	V	W	I	R	S
V	V	W	U	S	I	R
W	W	U	V	R	S	I

Thus, for example, $\mathbf{V} \mathbf{U}=\mathbf{S}$ (i.e., the reflection \mathbf{U} followed by the reflection \mathbf{V} is the rotation \mathbf{S}), and $\mathbf{U V}=\mathbf{R}$.

Note that each element of the group occurs exactly once in each row and in each column in the main body of the table (excluding the labels at the left of each row and at the head of each column), This is a general property of Cayley tables of groups which can be proved easily from the group axioms.

2.4 Elementary Properties of Groups

In what follows, we describe basic properties of a group G, using multiplicative notation and denoting the identity element of the group by the letter e.

Lemma 2.1 A group G has exactly one identity element e satisfying ex $=$ $x=$ xe for all $x \in G$.

Proof Suppose that f is an element of G with the property that $f x=x$ for all elements x of G. Then in particular $f=f e=e$. Similarly one can show that e is the only element of G satisfying $x e=x$ for all elements x of G.

Lemma 2.2 An element x of a group G has exactly one inverse x^{-1}.
Proof We know from the axioms that the group G contains at least one element x^{-1} which satisfies $x x^{-1}=e$ and $x^{-1} x=e$. If z is any element of G which satisfies $x z=e$ then $z=e z=\left(x^{-1} x\right) z=x^{-1}(x z)=x^{-1} e=x^{-1}$. Similarly if w is any element of G which satisfies $w x=e$ then $w=x^{-1}$. In particular we conclude that the inverse x^{-1} of x is uniquely determined, as required.

Lemma 2.3 Let x and y be elements of a group G. Then $(x y)^{-1}=y^{-1} x^{-1}$.
Proof It follows from the group axioms that

$$
(x y)\left(y^{-1} x^{-1}\right)=x\left(y\left(y^{-1} x^{-1}\right)\right)=x\left(\left(y y^{-1}\right) x^{-1}\right)=x\left(e x^{-1}\right)=x x^{-1}=e .
$$

Similarly $\left(y^{-1} x^{-1}\right)(x y)=e$, and thus $y^{-1} x^{-1}$ is the inverse of $x y$, as required.

Note in particular that $\left(x^{-1}\right)^{-1}=x$ for all elements x of a group G, since x has the properties that characterize the inverse of the inverse x^{-1} of x.

Given an element x of a group G, we define x^{n} for each positive integer n by the requirement that $x^{1}=x$ and $x^{n}=x^{n-1} x$ for all $n>1$. We also define $x^{0}=e$, where e is the identity element of the group, and we define x^{-n} to be the inverse of x^{n} for all positive integers n.

Theorem 2.4 Let x be an element of a group G. Then $x^{m+n}=x^{m} x^{n}$ and $x^{m n}=\left(x^{m}\right)^{n}$ for all integers m and n.
Proof The identity $x^{m+n}=x^{m} x^{n}$ clearly holds when $m=0$ and when $n=0$. The identity $x^{m+n}=x^{m} x^{n}$ can be proved for all positive integers m and n by induction on n. The identity when m and n are both negative then follows from the identity $x^{-m-n}=x^{-n} x^{-m}$ on taking inverses. The result when m and n have opposite signs can easily be deduced from that where m and n both have the same sign.

The identity $x^{m n}=\left(x^{m}\right)^{n}$ follows immediately from the definitions when $n=0,1$ or -1 . The result when n is positive can be proved by induction on n. The result when n is negative can then be obtained on taking inverses.

If additive notation is employed for an Abelian group then the notation ' x ' ' is replaced by ' $n x$ ' for all integers n and elements x of the group. The analogue of Theorem 2.4 then states that $(m+n) x=m x+n x$ and $(m n) x=$ $m(n(x))$ for all integers m and n.

2.5 The General Associative Law

Let $x_{1}, x_{2}, \ldots, x_{n}$ be elements of a group G. We define the product $x_{1} x_{2} \cdots x_{n}$ as follows:-

$$
\begin{aligned}
x_{1} x_{2} x_{3} & =\left(x_{1} x_{2}\right) x_{3} \\
x_{1} x_{2} x_{3} x_{4} & =\left(x_{1} x_{2} x_{3}\right) x_{4}=\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4} \\
x_{1} x_{2} x_{3} x_{4} x_{5} & =\left(x_{1} x_{2} x_{3} x_{4}\right) x_{5}=\left(\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}\right) x_{5} \\
& \vdots \\
x_{1} x_{2} x_{3} \cdots x_{n} & =\left(x_{1} x_{2} \cdots x_{n-1}\right) x_{n}=\left(\cdots\left(\left(x_{1} x_{2}\right) x_{3}\right) \cdots x_{n-1}\right) x_{n} .
\end{aligned}
$$

(Thus if $p_{j}=x_{1}, x_{2}, \ldots, x_{j}$ for $j=1,2, \ldots, n$ then $p_{j}=p_{j-1} x_{j}$ for each $j>1$.)

Now an arbitrary product of n elements of G is determined by an expression involving n elements of G together with equal numbers of left and right parentheses that determine the order in which the product is evaluated. The General Associative Law ensures that the value of such a product is determined only by the order in which the elements of the group occur within that product. Thus a product of n elements of G has the value $x_{1} x_{2} \cdots x_{n}$, where $x_{1}, x_{2}, \ldots, x_{n}$ are the elements to be multiplied, listed in the order in which they occur in the expression defining the product.

Example Given four elements x_{1}, x_{2}, x_{3} and x_{4} of a group, the products

$$
\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}, \quad\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right), \quad\left(x_{1}\left(x_{2} x_{3}\right)\right) x_{4}, \quad x_{1}\left(\left(x_{2} x_{3}\right) x_{4}\right), \quad x_{1}\left(x_{2}\left(x_{3} x_{4}\right)\right)
$$

all have the same value. (Note that $x_{1} x_{2} x_{3} x_{4}$ is by definition the value of the first of these expressions.)

The General Associative Law for products of four or more elements of a group can be verified by induction on the number on the number of elements involved.

Consider a product of n elements of the group G, where $n>3$. Let these elements be $x_{1}, x_{2}, \ldots, x_{n}$ when listed in the order in which they occur in the expression for the product. Suppose also that it is known that the General Associative Law holds for all products involving fewer than n elements (i.e., any two products with fewer than n elements have the same value whenever the same elements of G occur in both products in the same order). We must show that the value of the product is $x_{1} x_{2} \cdots x_{n}$, where

$$
x_{1} x_{2} \cdots x_{n}=\left(\ldots\left(\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}\right) \cdots\right) x_{n}
$$

Now the first step in evaluating the product will involve multiplying some element x_{r} with the succeeding element x_{r+1}. The subsequent steps will then evaluate a product of $n-1$ elements, namely the elements x_{i} for $1 \leq i<r$, the element $x_{r} x_{r+1}$, and the elements x_{i} for $r+1<i \leq n$. The validity of the General Associative Law for products of fewer than n elements then ensures that the value p of the product is given by

$$
p= \begin{cases}\left(x_{1} x_{2}\right) x_{3} \cdots x_{n} & \text { if } r=1 ; \\ x_{1}\left(x_{2} x_{3}\right) x_{4} \cdots x_{n} & \text { if } r=2 ; \\ x_{1} x_{2}\left(x_{3} x_{4}\right) x_{5} \cdots x_{n} & \text { if } r=3(\text { and } n>4) \\ \vdots & \\ x_{1} x_{2} \cdots x_{n-2}\left(x_{n-1} x_{n}\right) & \text { if } r=n-1\end{cases}
$$

Also the General Associativity Law for products of fewer than n elements ensures that if $r<n-1$ then

$$
x_{1} x_{2} \cdots x_{r-1}\left(x_{r} x_{r+1}\right)=x_{1} x_{2} \cdots x_{r+1}
$$

and thus $p=x_{1} x_{2} \cdots x_{n}$. Thus in order to verify the General Associative Law for products of n elements it only remains to verify that

$$
x_{1} x_{2} \cdots x_{n-2}\left(x_{n-1} x_{n}\right)=x_{1} x_{2} \cdots x_{n} .
$$

The case when $n=3$ is the Associative Law for products of three elements. For $n>3$ let y be the product $x_{1} x_{2}, \cdots x_{n-2}$ of the elements $x_{1}, x_{2}, \ldots, x_{n-2}$ (with $y=x_{1} x_{2}$ in the case when $n=4$). Then

$$
\begin{aligned}
x_{1} x_{2} \cdots x_{n-2}\left(x_{n-1} x_{n}\right) & =y\left(x_{n-1} x_{n}\right)=\left(y x_{n-1}\right) x_{n}=\left(x_{1} x_{2} \cdots x_{n-1}\right) x_{n} \\
& =x_{1} x_{2} \cdots x_{n} .
\end{aligned}
$$

We have thus shown that if the General Associative Law holds for all products involving fewer than n elements of the group G, then it holds for all products involving n elements of G. The validity of the General Associative Law therefore follows by induction on the number of elements occurring in the product in question.

Note that the only group axiom used in verifying the General Associative Law is the Associative Law for products of three elements. It follows from this that the General Associative Law holds for any binary operation on a set that satisfies the Associative Law for products of three elements. (A set with a binary operation satisfying the Associative Law is referred to as a semigroup - the General Associative Law holds in all semigroups.)

2.6 Subgroups

Definition Let G be a group, and let H be a subset of G. We say that H is a subgroup of G if the following conditions are satisfied:

- the identity element of G is an element of H;
- the product of any two elements of H is itself an element of H;
- the inverse of any element of H is itself an element of H.

Lemma 2.5 Let x be an element of a group G. Then the set of all elements of G that are of the form x^{n} for some integer n is a subgroup of G.

Proof Let $H=\left\{x^{n}: n \in \mathbb{Z}\right\}$. Then the identity element belongs to H, since it is equal to x^{0}. The product of two elements of H is itself an element of H, since $x^{m} x^{n}=x^{m+n}$ for all integers m and n (see Theorem 2.4). Also the inverse of an element of H is itself an element of H since $\left(x^{n}\right)^{-1}=x^{-n}$ for all integers n. Thus H is a subgroup of G, as required.

Definition Let x be an element of a group G. The order of x is the smallest positive integer n for which $x^{n}=e$. The subgroup generated by x is the subgroup consisting of all elements of G that are of the form x^{n} for some integer n.

Lemma 2.6 Let H and K be subgroups of a group G. Then $H \cap K$ is also a subgroup of G.

Proof The identity element of G belongs to $H \cap K$ since it belongs to the subgroups H and K. If x and y are elements of $H \cap K$ then $x y$ is an element of H (since x and y are elements of H), and $x y$ is an element of K, and therefore $x y$ is an element of $H \cap K$. Also the inverse x^{-1} of an element x of $H \cap K$ belongs to H and to K and thus belongs to $H \cap K$, as required.

More generally, the intersection of any collection of subgroups of a given group is itself a subgroup of that group.

2.7 Cyclic Groups

Definition A group G is said to be cyclic, with generator x, if every element of G is of the form x^{n} for some integer n.

Example The group \mathbb{Z} of integers under addition is a cyclic group, generated by 1 .

Example Let n be a positive integer. The set \mathbb{Z}_{n} of congruence classes of integers modulo n is a cyclic group of order n with respect to the operation of addition.

Example The group of all rotations of the plane about the origin through an integer multiple of $2 \pi / n$ radians is a cyclic group of order n for all integers n. This group is generated by an anticlockwise rotation through an angle of $2 \pi / n$ radians.

Lemma 2.7 Let G be a finite cyclic group with generator x, and let j and k be integers. Then $x^{j}=x^{k}$ if and only if $j-k$ is divisible by the order of the group.

Proof First we show that $x^{m}=e$ for some strictly positive integer m, where e is the identity element of G. Now $x^{j}=x^{k}$ for some integers j and k with $j<k$, since G is finite. Let $m=k-j$. Then $m>0$ and $x^{m}=x^{k}\left(x^{j}\right)^{-1}=e$.

Let n be the smallest strictly positive integer for which $x^{n}=e$. Now any integer i can be expressed in the form $i=q n+r$, where q and r are integers and $0 \leq r<n$. (Thus q is the greatest integer for which $q n \leq i$.) Then $x^{i}=\left(x^{n}\right)^{q} x^{r}=x^{r}$ (since $x^{n}=e$). Now the choice of n ensures that $x^{r} \neq e$ if $0<r<n$. It follows that an integer i satisfies $x^{i}=e$ if and only if n divides i.

Let j and k be integers. Now $x^{j}=x^{k}$ if and only if $x^{j-k}=e$, since $x^{j-k}=x^{j}\left(x^{k}\right)^{-1}$. It follows that $x^{j}=x^{k}$ if and only if $j-k$ is divisible by n. Moreover n is the order of the group G, since each element of G is equal to one of the elements x^{i} with $0 \leq i<n$ and these elements are distinct.

We now classify all subgroups of a cyclic group G. Let x be a generator of G. Given a subgroup H of G with more than one element, let m be the smallest strictly positive integer for which $x^{m} \in H$. Suppose that $x^{i} \in H$ for some integer i. Now i can be expressed in the form $i=q m+r$, where q and r are integers and $0 \leq r<m$. (Thus q is the greatest integer for which $q m \leq i$.) But then $x^{r}=x^{i-q m}=x^{i}\left(x^{m}\right)^{-q}$, where $x^{i} \in H$ and $x^{m} \in H$, and therefore $x^{r} \in H$. The choice of m now ensures that $r=0$, and hence $i=q m$. Thus $x^{i} \in H$ if and only if i is some integer multiple of m. This shows that H is the cyclic group generated by x^{m}, where m is the smallest strictly positive integer for which $x^{m} \in H$.

Let us consider the case when the cyclic group G is finite. Let s be the order of G. Then $x^{s}=e$, and hence x^{s} belongs to the subgroup H. It follows that s must be some integer multiple of m, where m is the smallest strictly positive integer for which $x^{m} \in H$. Thus the subgroups of a finite cyclic group G with generator g are the trivial subgroup $\{e\}$ and the cyclic subgroups generated by x^{m} for each divisor m of the order of G.

Consider now the case when the cyclic group G is infinite. For each positive integer m, the element x^{m} generates a subgroup of G, and moreover m is the smallest strictly positive integer for which x^{m} belongs to that subgroup. Thus if G is an infinite cyclic group with generator x then the subgroups of G are the trivial subgroup $\{e\}$ and the cyclic subgroups generated by x^{m} for each positive integer m.

We have thus classified all subgroups of a cyclic group. In particular we see that any subgroup of a cyclic group is itself a cyclic group.

2.8 Cosets and Lagrange's Theorem

Definition Let H be a subgroup of a group G. A left coset of H in G is a subset of G that is of the form $x H$, where $x \in G$ and

$$
x H=\{y \in G: y=x h \text { for some } h \in H\} .
$$

Similarly a right coset of H in G is a subset of G that is of the form $H x$, where $x \in G$ and

$$
H x=\{y \in G: y=h x \text { for some } h \in H\} .
$$

Note that a subgroup H of a group G is itself a left coset of H in G.
Lemma 2.8 Let H be a subgroup of a group G. Then the left cosets of H in G have the following properties:-
(i) $x \in x H$ for all $x \in G$;
(ii) if x and y are elements of G, and if $y=x a$ for some $a \in H$, then $x H=y H$;
(iii) if x and y are elements of G, and if $x H \cap y H$ is non-empty then $x H=$ $y H$.

Proof Let $x \in G$. Then $x=x e$, where e is the identity element of G. But $e \in H$. It follows that $x \in x H$. This proves (i).

Let x and y be elements of G, where $y=x a$ for some $a \in H$. Then $y h=x(a h)$ and $x h=y\left(a^{-1} h\right)$ for all $h \in H$. Moreover $a h \in H$ and $a^{-1} h \in H$ for all $h \in H$, since H is a subgroup of G. It follows that $y H \subset x H$ and $x H \subset y H$, and hence $x H=y H$. This proves (ii)

Finally suppose that $x H \cap y H$ is non-empty for some elements x and y of G. Let z be an element of $x H \cap y H$. Then $z=x a$ for some $a \in H$, and $z=y b$ for some $b \in H$. It follows from (ii) that $z H=x H$ and $z H=y H$. Therefore $x H=y H$. This proves (iii).

Lemma 2.9 Let H be a finite subgroup of a group G. Then each left coset of H in G has the same number of elements as H.

Proof Let $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, where $h_{1}, h_{2}, \ldots, h_{m}$ are distinct, and let x be an element of G. Then the left coset $x H$ consists of the elements $x h_{j}$ for $j=1,2, \ldots, m$. Suppose that j and k are integers between 1 and m for which $x h_{j}=x h_{k}$. Then $h_{j}=x^{-1}\left(x h_{j}\right)=x^{-1}\left(x h_{k}\right)=h_{k}$, and thus $j=k$, since $h_{1}, h_{2}, \ldots, h_{m}$ are distinct. It follows that the elements $x h_{1}, x h_{2}, \ldots, x h_{m}$ are distinct. We conclude that the subgroup H and the left coset $x H$ both have m elements, as required.

Theorem 2.10 (Lagrange's Theorem) Let G be a finite group, and let H be a subgroup of G. Then the order of H divides the order of G.

Proof Each element of G belongs to at least one left coset of H in G, and no element can belong to two distinct left cosets of H in G (see Lemma 2.8). Therefore every element of G belongs to exactly one left coset of H. Moreover each left coset of H contains $|H|$ elements (Lemma 2.9). Therefore $|G|=$ $n|H|$, where n is the number of left cosets of H in G. The result follows.

Definition Let H be a subgroup of a group G. If the number of left cosets of H in G is finite then the number of such cosets is referred to as the index of H in G, denoted by $[G: H]$.

The proof of Lagrange's Theorem shows that the index $[G: H]$ of a subgroup H of a finite group G is given by $[G: H]=|G| /|H|$.

Corollary 2.11 Let x be an element of a finite group G. Then the order of x divides the order of G.

Proof Let H be the set of all elements of G that are of the form x^{n} for some integer n. Then H is a subgroup of G (see Lemma 2.5), and the order of H is the order of x. But the order of H divides G by Lagrange's Theorem (Theorem 2.10). The result follows.

Corollary 2.12 Any finite group of prime order is cyclic.
Proof Let G be a group of prime order, and let x be some element of G that is not the identity element. Then the order of x is greater than one and divides the order of G. But then the order of x must be equal to the order of G, since the latter is a prime number. Thus G is a cyclic group generated by x, as required.

2.9 Normal Subgroups and Quotient Groups

Let A and B be subsets of a group G. The product $A B$ of the sets A and B is defined by

$$
A B=\{x y: x \in A \text { and } y \in B\} .
$$

We denote $\{x\} A$ and $A\{x\}$ by $x A$ and $A x$, for all elements x of G and subsets A of G. The Associative Law for multiplication of elements of G ensures that $(A B) C=A(B C)$ for all subsets A, B and C of G. We can therefore use the notation $A B C$ to denote the products $(A B) C$ and $A(B C)$;
and we can use analogous notation to denote the product of four or more subsets of G.

If A, B and C are subsets of a group G, and if $A \subset B$ then clearly $A C \subset B C$ and $C A \subset C B$.

Note that if H is a subgroup of the group G and if x is an element of G then $x H$ is the left coset of H in G that contains the element x. Similarly $H x$ is the right coset of H in G that contains the element x.

If H is a subgroup of G then $H H=H$. Indeed $H H \subset H$, since the product of two elements of a subgroup H is itself an element of H. Also $H \subset H H$ since $h=e h$ for any element h of H, where e, the identity element of G, belongs to H.

Definition A subgroup N of a group G is said to be a normal subgroup of G if $x n x^{-1} \in N$ for all $n \in N$ and $x \in G$.

The notation ' $N \triangleleft G$ ' signifies ' N is a normal subgroup of G '.
Definition A group G is said to be simple if the only normal subgroups of G are the whole of G and the trivial subgroup $\{e\}$ whose only element is the identity element e of G.
Lemma 2.13 Every subgroup of an Abelian group is a normal subgroup.
Proof Let N be a subgroup of an Abelian group G. Then

$$
x n x^{-1}=(x n) x^{-1}=(n x) x^{-1}=n\left(x x^{-1}\right)=n e=n
$$

for all $n \in N$ and $x \in G$, where e is the identity element of G. The result follows.

Example Let S_{3} be the group of permutations of the set $\{1,2,3\}$, and let H be the subgroup of S_{3} consisting of the identity permutation and the transposition (12). Then H is not normal in G, since $(23)^{-1}(12)(23)=$ $(23)(12)(23)=(13)$ and (13) does not belong to the subgroup H.

Proposition 2.14 A subgroup N of a group G is a normal subgroup of G if and only if $x N x^{-1}=N$ for all elements x of G.

Proof Suppose that N is a normal subgroup of G. Let x be an element of G. Then $x N x^{-1} \subset N$. (This follows directly from the definition of a normal subgroup.) On replacing x by x^{-1} we see also that $x^{-1} N x \subset N$, and thus $N=x\left(x^{-1} N x\right) x^{-1} \subset x N x^{-1}$. Thus each of the sets N and $x N x^{-1}$ is contained in the other, and therefore $x N x^{-1}=N$.

Conversely if N is a subgroup of G with the property that $x N x^{-1}=N$ for all $x \in G$, then it follows immediately from the definition of a normal subgroup that N is a normal subgroup of G.

Corollary 2.15 A subgroup N of a group G is a normal subgroup of G if and only if $x N=N x$ for all elements x of G.

Proof Let N be a subgroup of G, and let x be an element of G. If $x N x^{-1}=$ N then $x N=\left(x N x^{-1}\right) x=N x$. Conversely if $x N=N x$ then $x N x^{-1}=$ $N x x^{-1}=N e=N$, where e is the identity element of G. Thus $x N=N x$ if and only if $x N x^{-1}=N$. It follows from Proposition 2.14 that a subgroup N of G is normal if and only if $x N=N x$ for all elements x of G, as required.

Let N be a normal subgroup of G. Corollary 2.15 shows that a subset of G is a left coset of N in G if and only if it is a right coset of N in G. We may therefore refer to the left and right cosets of a normal subgroup N as cosets of N in G (since it is not in this case necessary to distinguish between left and right cosets).

Lemma 2.16 Let N be a normal subgroup of a group G and let x and y be elements of G. Then $(x N)(y N)=(x y) N$.

Proof If N is a normal subgroup of G then $N y=y N$, and therefore $(x N)(y N)=x(N y) N=x(y N) N=(x y)(N N)$. But $N N=N$, since N is a subgroup of G. Therefore $(x N)(y N)=(x y) N$, as required.

Proposition 2.17 Let G be a group, and let N be a normal subgroup of G. Then the set of all cosets of N in G is a group under the operation of multiplication. The identity element of this group is N itself, and the inverse of a coset $x N$ is the coset $x^{-1} N$ for any element x of G.

Proof Let x, y and z be any elements of G. Then the product of the cosets $x N$ and $y N$ is the coset $(x y) N$. The subgroup N is itself a coset of N in G, since $N=e N$. Moreover

$$
\begin{gathered}
(x N) N=(x N)(e N)=(x e) N=x N, \\
N(x N)=(e N)(x N)=(e x) N=x N, \\
(x N)\left(x^{-1} N\right)=\left(x x^{-1}\right) N=N, \\
\left(x^{-1} N\right)(x N)=\left(x^{-1} x\right) N=N .
\end{gathered}
$$

for all elements x of G. Thus the group axioms are satisfied.
Definition Let N be a normal subgroup of a group G. The quotient group G / N is defined to be the group of cosets of N in G under the operation of multiplication.

Example Consider the dihedral group D_{8} of order 8, which we represent as the group of symmetries of a square in the plane with corners at the points whose Cartesian co-ordinates are $(1,1),(-1,1),(-1,-1)$ and $(1,-1)$. Then

$$
D_{8}=\left\{\mathbf{I}, \mathbf{R}, \mathbf{R}^{2}, \mathbf{R}^{3}, \mathbf{T}_{1}, \mathbf{T}_{2}, \mathbf{T}_{3}, \mathbf{T}_{4}\right\}
$$

where \mathbf{I} denotes the identity transformation, \mathbf{R} denotes an anticlockwise rotation about the origin through a right angle, and $\mathbf{T}_{1}, \mathbf{T}_{2}, \mathbf{T}_{3}$ and \mathbf{T}_{4} denote the reflections in the lines $y=0, x=y, x=0$ and $x=-y$ respectively. Let $N=\left\{\mathbf{I}, \mathbf{R}^{2}\right\}$. Then N is a subgroup of D_{8}. The left cosets of N in D_{8} are N, A, B and C, where

$$
A=\left\{\mathbf{R}, \mathbf{R}^{3}\right\}, \quad B=\left\{\mathbf{T}_{1}, \mathbf{T}_{3}\right\}, \quad C=\left\{\mathbf{T}_{2}, \mathbf{T}_{4}\right\} .
$$

Moreover N, A, B and C are also the right cosets of N in D_{8}, and thus N is a normal subgroup of D_{8}. On multiplying the cosets A, B and C with one another we find that $A B=B A=C, A C=C A=B$ and $B C=C B=A$. Therefore the quotient group D_{8} / N is a group of order 4 with Cayley table

	N	A	B	C
N	N	A	B	C
A	A	N	C	B
B	B	C	N	A
C	C	B	A	N.

This is the Cayley table of the Klein 4 -group V_{4}.
There is an alternative approach to the construction of quotient groups which utilises the basic properties of equivalence relations. Let G be a group, and let H be a subgroup of G. Define a relation \sim_{H} on G, where elements x and y of G satisfy $x \sim_{H} y$ if and only if there exists some element h of H satisfying $x=y h$. Now $x=x e$, where e, the identity element of G, is an element of H. It follows that $x \sim_{H} x$ for all elements x of G. Thus the relation \sim_{H} is reflexive. If elements x and y of G satisfy $x \sim_{H} y$ then they also satisfy $y \sim_{H} x$, for if $x=y h$, where h is an element of H, then $y=x h^{-1}$. Thus the relation \sim_{H} is symmetric. If x, y and z are elements of G satisfying $x \sim_{H} y$ and $y \sim_{H} z$ then $x \sim_{H} z$, for if $x=y h$ and $y=z k$, where h and k belong to H, then $x=z k h$, and $k h$ belongs to H. Thus the relation \sim_{H} is transitive. We conclude that the relation \sim_{H} is an equivalence relation. One can readily verify that its equivalence classes are the left cosets of H in G.

Now suppose that the subgroup H is normal in G. Let x, y, u and v be elements of G, where $x \sim_{H} u$ and $y \sim_{H} v$. Then there exist elements h and
k of H such that $x=u h$ and $y=v k$. Then $x y=u h v k=u v\left(v^{-1} h v k\right)$. Now $v^{-1} h v \in H$ since $h \in H$ and H is normal in G. It follows that $v^{-1} h v k \in$ H, since the product of any two elements of a subgroup belongs to that subgroup. We deduce that if $x \sim_{H} u$ and $y \sim_{H} v$ then $x y \sim_{H} u v$. Also $x^{-1}=(u h)^{-1}=h^{-1} u^{-1}=u^{-1}\left(u h^{-1} u^{-1}\right.$, where $u h^{-1} u^{-1} \in H$. It follows that if $x \sim_{H} u$ then $x^{-1} \sim_{H} u^{-1}$.

Now, for any $x \in G$, let C_{x} denote the coset of H to which the element x belongs. Now C_{x} is the equivalence class of x with respect to the equivalence relation \sim_{H}. It follows from this that elements x and u satisfy $C_{x}=C_{u}$ if and only if $x \sim_{H} u$. We conclude that if H is normal in G, and if $C_{x}=C_{u}$ and $C_{y}=C_{v}$ then $C_{x y}=C_{u v}$ and $C_{x^{-1}}=C_{u^{-1}}$. One can deduce from this that there is a well-defined group multiplication operation on cosets of H in G, where $C_{x} C_{y}$ is defined to be $C_{x y}$. The results just prove show that this definition of $C_{x} C_{y}$ does not depend on the choice of x and y representing their respective cosets. The identity element is the subgroup H itself, which can be viewed as the coset containing the identity element, and the inverse of the $\operatorname{coset} C_{x}$ is the coset $C_{x^{-1}}$. One can readily verify that all the group axioms are satisfied and thus the set of cosets of H in G does indeed constitute a group, the quotient group G / H.

2.10 Homomorphisms

Definition A homomorphism $\theta: G \rightarrow K$ from a group G to a group K is a function with the property that $\theta\left(g_{1} * g_{2}\right)=\theta\left(g_{1}\right) * \theta\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$, where $*$ denotes the group operation on G and on K.

Example Let q be an integer. The function from the group \mathbb{Z} of integers to itself that sends each integer n to $q n$ is a homomorphism.

Example Let x be an element of a group G. The function that sends each integer n to the element x^{n} is a homomorphism from the group \mathbb{Z} of integers to G, since $x^{m+n}=x^{m} x^{n}$ for all integers m and n (Theorem 2.4).

Lemma 2.18 Let $\theta: G \rightarrow K$ be a homomorphism. Then $\theta\left(e_{G}\right)=e_{K}$, where e_{G} and e_{K} denote the identity elements of the groups G and K. Also $\theta\left(x^{-1}\right)=$ $\theta(x)^{-1}$ for all elements x of G.

Proof Let $z=\theta\left(e_{G}\right)$. Then $z^{2}=\theta\left(e_{G}\right) \theta\left(e_{G}\right)=\theta\left(e_{G} e_{G}\right)=\theta\left(e_{G}\right)=z$. The result that $\theta\left(e_{G}\right)=e_{K}$ now follows from the fact that an element z of K satisfies $z^{2}=z$ if and only if z is the identity element of K.

Let x be an element of G. The element $\theta\left(x^{-1}\right)$ satisfies $\theta(x) \theta\left(x^{-1}\right)=$ $\theta\left(x x^{-1}\right)=\theta\left(e_{G}\right)=e_{K}$, and similarly $\theta\left(x^{-1}\right) \theta(x)=e_{K}$. The uniqueness of the inverse of $\theta(x)$ now ensures that $\theta\left(x^{-1}\right)=\theta(x)^{-1}$.

An isomorphism $\theta: G \rightarrow K$ between groups G and K is a homomorphism that is also a bijection mapping G onto K. Two groups G and K are isomorphic if there exists an isomorphism mapping G onto K.

Example Let D_{6} be the group of symmetries of an equilateral triangle in the plane with vertices A, B and C, and let S_{3} be the group of permutations of the set $\{A, B, C\}$. The function which sends a symmetry of the triangle to the corresponding permutation of its vertices is an isomorphism between the dihedral group D_{6} of order 6 and the symmetric group S_{3}.

Example Let \mathbb{R} be the group of real numbers with the operation of addition, and let \mathbb{R}^{+}be the group of strictly positive real numbers with the operation of multiplication. The function exp: $\mathbb{R} \rightarrow \mathbb{R}^{+}$that sends each real number x to the positive real number e^{x} is an isomorphism: it is both a homomorphism of groups and a bijection. The inverse of this isomorphism is the function $\log : \mathbb{R}^{+} \rightarrow \mathbb{R}$ that sends each strictly positive real number to its natural logarithm.

Here is some further terminology regarding homomorphisms:

- A monomorphism is an injective homomorphism.
- An epimorphism is a surjective homomorphism.
- An endomorphism is a homomorphism mapping a group into itself.
- An automorphism is an isomorphism mapping a group onto itself.

Definition The kernel $\operatorname{ker} \theta$ of the homomorphism $\theta: G \rightarrow K$ is the set of all elements of G that are mapped by θ onto the identity element of K.

Example Let the group operation on the set $\{+1,-1\}$ be multiplication, and let $\theta: \mathbb{Z} \rightarrow\{+1,-1\}$ be the homomorphism that sends each integer n to $(-1)^{n}$. Then the kernel of the homomorphism θ is the subgroup of \mathbb{Z} consisting of all even numbers.

Lemma 2.19 Let G and K be groups, and let $\theta: G \rightarrow K$ be a homomorphism from G to K. Then the kernel $\operatorname{ker} \theta$ of θ is a normal subgroup of G.

Proof Let x and y be elements of $\operatorname{ker} \theta$. Then $\theta(x)=e_{K}$ and $\theta(y)=e_{K}$, where e_{K} denotes the identity element of K. But then $\theta(x y)=\theta(x) \theta(y)=$ $e_{K} e_{K}=e_{K}$, and thus $x y$ belongs to ker θ. Also $\theta\left(x^{-1}\right)=\theta(x)^{-1}=e_{K}^{-1}=e_{K}$, and thus x^{-1} belongs to $\operatorname{ker} \theta$. We conclude that $\operatorname{ker} \theta$ is a subgroup of K. Moreover ker θ is a normal subgroup of G, for if $g \in G$ and $x \in \operatorname{ker} \theta$ then

$$
\theta\left(g x g^{-1}\right)=\theta(g) \theta(x) \theta(g)^{-1}=\theta(g) \theta\left(g^{-1}\right)=e_{K} .
$$

If N is a normal subgroup of some group G then N is the kernel of the quotient homomorphism $\theta: G \rightarrow G / N$ that sends $g \in G$ to the coset $g N$. It follows therefore that a subset of a group G is a normal subgroup of G if and only if it is the kernel of some homomorphism.

Proposition 2.20 Let G and K be groups, let $\theta: G \rightarrow K$ be a homomorphism from G to K, and let N be a normal subgroup of G. Suppose that $N \subset \operatorname{ker} \theta$. Then the homomorphism $\theta: G \rightarrow K$ induces a homomorphism $\hat{\theta}: G / N \rightarrow K$ sending $g N \in G / N$ to $\theta(g)$. Moreover $\hat{\theta}: G / N \rightarrow K$ is injective if and only if $N=\operatorname{ker} \theta$.

Proof Let x and y be elements of G. Now $x N=y N$ if and only if $x^{-1} y \in N$. Also $\theta(x)=\theta(y)$ if and only if $x^{-1} y \in \operatorname{ker} \theta$. Thus if $N \subset \operatorname{ker} \theta$ then $\theta(x)=$ $\theta(y)$ whenever $x N=y N$, and thus $\theta: G \rightarrow K$ induces a well-defined function $\hat{\theta}: G / N \rightarrow K$ sending $x N \in G / N$ to $\theta(x)$. This function is a homomorphism, since $\hat{\theta}((x N)(y N))=\hat{\theta}(x y N)=\theta(x y)=\theta(x) \theta(y)=\hat{\theta}(x N) \hat{\theta}(y N)$.

Suppose now that $N=\operatorname{ker} \theta$. Then $\theta(x)=\theta(y)$ if and only if $x N=y N$. Thus the homomorphism $\hat{\theta}: G / N \rightarrow K$ is injective. Conversely if $\hat{\theta}: G / N \rightarrow$ K is injective then N must be the kernel of θ, as required.

Corollary 2.21 Let G and K be groups, and let $\theta: G \rightarrow K$ be a homomorphism. Then $\theta(G) \cong G / \operatorname{ker} \theta$.

2.11 The Isomorphism Theorems

Lemma 2.22 Let G be a group, let H be a subgroup of G, and let N be a normal subgroup of G. Then the set $H N$ is a subgroup of G, where $H N=$ $\{h n: h \in H$ and $n \in N\}$.

Proof The set $H N$ clearly contains the identity element of G. Let x and y be elements of $H N$. We must show that $x y$ and x^{-1} belong to $H N$. Now $x=h u$ and $y=k v$ for some elements h and k of H and for some elements u and v of N. Then $x y=(h k)\left(k^{-1} u k v\right)$. But $k^{-1} u k \in N$, since N is normal. It follows that $k^{-1} u k v \in N$, since N is a subgroup and $k^{-1} u k v$ is the product of the elements $k^{-1} u k$ and v of N. Also $h k \in H$. It follows that $x y \in H N$.

We must also show that $x^{-1} \in H N$. Now $x^{-1}=u^{-1} h^{-1}=h^{-1}\left(h u^{-1} h^{-1}\right)$. Also $h^{-1} \in H$, since H is a subgroup of G, and $h u^{-1} h^{-1} \in N$, since N is a normal subgroup of G. It follows that $x^{-1} \in H N$, and thus $H N$ is a subgroup of G, as required.

Theorem 2.23 (First Isomorphism Theorem) Let G be a group, let H be a subgroup of G, and let N be a normal subgroup of G. Then

$$
\frac{H N}{N} \cong \frac{H}{N \cap H} .
$$

Proof Every element of $H N / N$ is a coset of N that is of the form $h N$ for some $h \in H$. Thus if $\varphi(h)=h N$ for all $h \in H$ then $\varphi: H \rightarrow H N / N$ is a surjective homomorphism, and $\operatorname{ker} \varphi=N \cap H$. But $\varphi(H) \cong H / \operatorname{ker} \varphi$ (Corollary 2.21). Therefore $H N / N \cong H /(N \cap H)$ as required.

Theorem 2.24 (Second Isomorphism Theorem) Let M and N be normal subgroups of a group G, where $M \subset N$. Then

$$
\frac{G}{N} \cong \frac{G / M}{N / M}
$$

Proof There is a well-defined homomorphism $\theta: G / M \rightarrow G / N$ that sends $g M$ to $g N$ for all $g \in G$. Moreover the homomorphism θ is surjective, and $\operatorname{ker} \theta=N / M$. But $\theta(G / M) \cong(G / M) / \operatorname{ker} \theta$ (Corollary 2.21). Therefore G / N is isomorphic to $(G / M) /(N / M)$, as required.

2.12 Direct products of groups

Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups, and let G be the Cartesian product $G_{1} \times G_{2} \times$ $\cdots \times G_{n}$ of $G_{1}, G_{2}, \ldots, G_{n}$ (when the latter are regarded as sets). Then the elements of G are n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where $x_{i} \in G_{i}$ for $i=1,2, \ldots, n$. We can multiply two elements of G as follows:

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right)
$$

One can readily verify that G is a group with respect to this binary operation: multiplication is associative; the identity element of the group is $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$, where e_{i} is the identity element of G_{i} for each i; and the inverse of an element $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of G is $\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)$. We say that the group G is the direct product of the groups $G_{1}, G_{2}, \ldots, G_{n}$: this direct product is (not surprisingly) denoted by $G_{1} \times G_{2} \times \cdots \times G_{n}$.
Example Let C_{2} and C_{3} be cyclic groups of orders 2 and 3 respectively. Then $C_{2} \times C_{3}$ is a cyclic group of order 6 , and $C_{2} \times C_{2}$ is isomorphic to the Klein 4 -group whose Cayley table is

	I	A	B	C
I	I	A	B	C
A	A	I	C	B
B	B	C	I	A
C	C	B	A	I

Let us first consider $C_{2} \times C_{3}$. Let x and y be generators of C_{2} and C_{3} respectively, and let e and e^{\prime} denote the identity elements of C_{2} and C_{3}. Thus $C_{2}=\{e, x\}$ and $C_{3}=\left\{e^{\prime}, y, y^{2}\right\}$, where $x^{2}=e$ and $y^{3}=e^{\prime}$. The elements of $C_{2} \times C_{3}$ are

$$
\left(e, e^{\prime}\right), \quad(e, y), \quad\left(e, y^{2}\right), \quad\left(x, e^{\prime}\right), \quad(x, y), \quad\left(x, y^{2}\right)
$$

Let $z=(x, y)$. On computing the powers of z we find that

$$
z^{2}=\left(e, y^{2}\right), \quad z^{3}=\left(x, e^{\prime}\right), \quad z^{4}=(e, y), \quad z^{5}=\left(x, y^{2}\right), \quad z^{6}=\left(e, e^{\prime}\right) .
$$

Thus 6 is the smallest positive integer n for which z^{n} is equal to the identity element $\left(e, e^{\prime}\right)$ of the group. We deduce that the group $C_{2} \times C_{3}$ (which is a group of order 6) must be a cyclic group generated by the element z.

Next consider $C_{2} \times C_{2}$. This has four elements I, A, B and C, where $I=(e, e), A=(e, x), B=(x, e)$ and $C=(x, x)$. If we calculate the Cayley table for the group, we discover that it is that of the Klein 4-group.

2.13 Cayley's Theorem

Theorem 2.25 (Cayley's Theorem) Let G be a group of order n. Then G is isomorphic to a subgroup of the group S_{n} of permutations of a set of n elements.

Proof For each element x of G, let $\sigma_{x}: G \rightarrow G$ be the function defined such that $\sigma_{x}(g)=x g$ for all $g \in G$. Now

$$
\sigma_{x^{-1}}\left(\sigma_{x}(g)\right)=x^{-1}(x g)=\left(x^{-1} x\right) g=g
$$

and

$$
\sigma_{x}\left(\sigma_{x^{-1}}(g)\right)=x\left(x^{-1} g\right)=\left(x\left(x^{-1}\right) g=g\right.
$$

for all $g \in G$. It follows that, for any $x \in G$, the function $\sigma_{x}: G \rightarrow G$ is a bijection whose inverse is $\sigma_{x^{-1}}$ It follows that σ_{x} is a permutation of G for all $x \in G$, and thus the function sending an element x of G to the permutation σ_{x} is a function from G to the group of permutations of G. This function is a homomorphism. Indeed $\sigma_{x y}=\sigma_{x} \circ \sigma_{y}$ since $\sigma_{x y}(g)=(x y) g=x(y g)=$ $\sigma_{x}\left(\sigma_{y}(g)\right)$ for all $g \in G$. The homomorphism sending $x \in G$ to σ_{x} is be injective, for if σ_{x} is the identity permutation then $x g=g$ for all $g \in G$, and hence x is the identity element of G. It follows that G is isomorphic to the image of the homomorphism. This image is a subgroup $\left\{\sigma_{x}: x \in G\right\}$ of the group of permutations of G. The result follows.

2.14 Group Actions, Orbits and Stabilizers

Definition A left action of a group G on a set X associates to each $g \in G$ and $x \in X$ an element $g \cdot x$ of X in such a way that $g \cdot(h \cdot x)=(g h) \cdot x$ and 1. $x=x$ for all $g, h \in G$ and $x \in X$, where 1 denotes the identity element of G.
Given a left action of a group G on a set X, the orbit of an element x of X is the subset $\{g . x: g \in G\}$ of X, and the stabilizer of x is the subgroup $\{g \in G: g \cdot x=x\}$ of G.

Lemma 2.26 Let G be a finite group which acts on a set X on the left. Then the orbit of an element x of X contains $[G: H]$ elements, where $[G: H]$ is the index of the stabilizer H of x in G.

Proof There is a well-defined function $\theta: G / H \rightarrow X$ defined on the set G / H of left cosets of H in G which sends $g H$ to $g . x$ for all $g \in G$. Moreover this function is injective, and its image is the orbit of x. The result follows.

2.15 Conjugacy

Definition Two elements h and k of a group G are said to be conjugate if $k=g h g^{-1}$ for some $g \in G$.

One can readily verify that the relation of conjugacy is reflexive, symmetric and transitive and is thus an equivalence relation on a group G. The equivalence classes determined by this relation are referred to as the conjugacy classes of G. A group G is the disjoint union of its conjugacy classes. Moreover the conjugacy class of the identity element of G contains no other element of G.

A group G is Abelian if and only if all its conjugacy classes contain exactly one element of the group G.

Definition Let G be a group. The centralizer $C(h)$ of an element h of G is the subgroup of G defined by $C(h)=\{g \in G: g h=h g\}$.

Lemma 2.27 Let G be a finite group, and let $h \in G$. Then the number of elements in the conjugacy class of h is equal to the index $[G: C(h)]$ of the centralizer $C(h)$ of h in G.

Proof There is a well-defined function $f: G / C(h) \rightarrow G$, defined on the set $G / C(h)$ of left cosets of $C(h)$ in G, which sends the coset $g C(h)$ to $g h g^{-1}$ for all $g \in G$. This function is injective, and its image is the conjugacy class of h. The result follows.

Let H be a subgroup of a group G. One can easily verify that $g \mathrm{Hg}^{-1}$ is also a subgroup of G for all $g \in G$, where $g H g^{-1}=\left\{g h g^{-1}: h \in H\right\}$.

Definition Two subgroups H and K of a group G are said to be conjugate if $K=g H^{-1}$ for some $g \in G$.

The relation of conjugacy is an equivalence relation on the collection of subgroups of a given group G.

2.16 Permutations and the Symmetric Groups

A permutation of a set S is a bijective function $p: S \rightarrow S$ from S to itself.
The identity permutation of a set S is the permutation that fixes every element of S.

Permutations of a finite set S are conveniently represented in a two row form

$$
\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
p\left(x_{1}\right) & p\left(x_{2}\right) & \ldots & p\left(x_{n}\right)
\end{array}\right),
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are the elements of the set S and $p\left(x_{1}\right), p\left(x_{2}\right), \ldots, p\left(x_{n}\right)$ are the images of these elements under the permutation p being represented. Thus for example

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

represents the permutation of the set $\{1,2,3\}$ that sends 1 to 2 , sends 2 to 3 , and sends 3 to 1 .

Example There are two permutations of a set $\{a, b\}$ with two elements. These are the identity permutation $\left(\begin{array}{ll}a & b \\ a & b\end{array}\right)$ and the transposition $\left(\begin{array}{cc}a & b \\ b & a\end{array}\right)$ that interchanges the elements a and b.

Example There are six permutations of a set $\{a, b, c\}$ with three elements. These are

$$
\begin{array}{lll}
\left(\begin{array}{lll}
a & b & c \\
a & b & c
\end{array}\right), & \left(\begin{array}{lll}
a & b & c \\
a & c & b
\end{array}\right), & \left(\begin{array}{lll}
a & b & c \\
b & a & c
\end{array}\right), \\
\left(\begin{array}{lll}
a & b & c \\
b & c & a
\end{array}\right), & \left(\begin{array}{lll}
a & b & c \\
c & a & b
\end{array}\right), & \left(\begin{array}{lll}
a & b & c \\
c & b & a
\end{array}\right) .
\end{array}
$$

Let S be a set. Then the composition of any two permutations of S is itself a permutation of S (since the composition of two bijections is a bijection). Also any permutation p of S has a well-defined inverse p^{-1}. (This follows
from the fact that the inverse of a bijection is itself a bijection.) Composition of permutations is associative: $(p \circ q) \circ r=p \circ(q \circ r)$ for all permutations p, q and r of S. (This can be verified by noting that $((p \circ q) \circ r)(x)=p(q(r(x)))=$ $(p \circ(q \circ r))(x)$ for all elements x of S.) It follows from this that the set of all permutations of a set S is a group, where the group operation is composition of permutations.

Definition For each natural number n, the symmetric group Σ_{n} is the group of permutations of the set $\{1,2, \ldots, n\}$.

Let S be a set, and let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct elements of S. We denote by $\left(a_{1} a_{2} \cdots a_{n}\right)$ the permutation of S that sends a_{i} to a_{i+1} for $i=1,2, \ldots, n-1$, sends a_{n} to a_{1}, and fixes all other elements of S. Such a permutation is called a cycle of order n, or n-cycle. A cycle of length 2 is also called a transposition.
(Note that evaluating a composition of cycles, we shall compose them from right to left, in accordance with standard practice when composing functions.)

Example There are 24 permutations of a set $\{a, b, c, d\}$ with exactly four elements. These are the following: the identity permutation that fixes every element of the set; the six transpositions $(a b),(a c),(a d),(b c),(b d)$ and $(c d)$; the eight 3-cycles $(b c d),(b d c),(a c d),(a d c),(a b d),(a d b),(a b c)$ and $(a c b)$; the six 4-cycles $(a b c d),(a b d c),(a c b d),(a c d b),(a d b c)$ and $(a d c b)$; and three further permutations $(a b)(c d),(a c)(b d)$ and $(a d)(b c)$.

Two cycles $\left(a_{1} a_{2} \cdots a_{m}\right)$ and $\left(b_{1} b_{2} \cdots b_{n}\right)$ are said to be disjoint when the elements $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are distinct (i.e., no pair of these elements coincide).

It is easy to see that if $\left(a_{1} a_{2} \cdots a_{m}\right)$ and $\left(b_{1} b_{2} \cdots b_{n}\right)$ are disjoint cycles then

$$
\left(a_{1} a_{2} \cdots a_{m}\right)\left(b_{1} b_{2} \cdots b_{n}\right)=\left(b_{1} b_{2} \cdots b_{n}\right)\left(a_{1} a_{2} \cdots a_{m}\right) .
$$

Proposition 2.28 Any permutation of a finite set S is the identity permutation, a cycle, or a composition of two or more disjoint cycles.

Proof We prove the result by induction on the number of elements in the set S. The result is trivially true if S has only one element, since in this case the only permutation of S is the identity permutation. Suppose that the result is known to be true for all permutations of sets with fewer than k elements. We show that the result then holds for all permutations of sets with k elements.

Let S be a set with k elements and let p be a permutation of S. Choose an element a_{1} of S, and let elements $a_{2}, a_{3}, a_{4}, \ldots$ of S be defined by the requirement that $p\left(a_{i}\right)=a_{i+1}$ for all positive integers i. Let n be the largest positive integer for which the elements $a_{1}, a_{2}, \ldots, a_{n}$ of S are distinct. We claim that $p\left(a_{n}\right)=a_{1}$.

Now the choice of n ensures that the elements $a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}$ are not distinct. Therefore $a_{n+1}=a_{j}$ for some positive integer j between 1 and n. If j were greater than one then we would have $a_{j}=p\left(a_{j-1}\right)$ and $a_{j}=p\left(a_{n}\right)$, which is impossible since if p is a permutation of S then exactly one element of S must be sent to a_{j} by p. Therefore $j=1$, and thus $p\left(a_{n}\right)=a_{1}$. Let $\sigma_{1}=\left(a_{1} a_{2} \cdots a_{n}\right)$.

Let T be the set $S \backslash\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ consisting of all elements of S other than $a_{1}, a_{2}, \ldots, a_{n}$. Now $a_{1}=p\left(a_{n}\right)$, and $a_{i}=p\left(a_{i-1}\right)$ for $i=2,3, \ldots, n$. Thus if $x \in T$ then $p(x) \neq a_{i}$ for $i=1,2, \ldots, n$ (since the function $p: S \rightarrow S$ is injective), and therefore $p(x) \in T$. We can therefore define a function $q: T \rightarrow T$, where $q(x)=p(x)$ for all $x \in T$. This function has a welldefined inverse $q^{-1}: T \rightarrow T$ where $q^{-1}(x)=p^{-1}(x)$ for all $x \in T$. It follows that $q: T \rightarrow T$ is a permutation of T. The induction hypothesis ensures that this permutation is the identity permutation of T, or is a cycle, or can be expressed as a composition of two or more disjoint cyles. These cycles extend to permutations of S that fix the elements $a_{1}, a_{2}, \ldots, a_{n}$, and these permutations of S are also cycles. It follows that either $p=\sigma_{1}$ (and q is the identity permutation of T), or else $p=\sigma_{1} \sigma_{2} \ldots \sigma_{m}$, where $\sigma_{2}, \sigma_{3}, \ldots, \sigma_{m}$ are disjoint cycles of S that fix $a_{1}, a_{2}, \ldots, a_{n}$ and correspond to cycles of T. Thus if the result holds for permutations of sets with fewer than k elements, then it holds for permutations of sets with k elements. It follows by induction on k that the result holds for permutations of finite sets.

Recall that a transposition is a permutation ($a b$) of a set S that interchanges two elements a and b of S and fixes the remaining elements.

Lemma 2.29 Every permutation of a finite set with more than one element can be expressed as a finite composition of transpositions.

Proof Each cycle can be expressed as a composition of transpositions. Indeed if $a_{1}, a_{2}, \ldots, a_{n}$ are distinct elements of a finite set S then

$$
\left(a_{1} a_{2} \cdots a_{n}\right)=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \cdots\left(a_{n-1} a_{n}\right)
$$

It follows from Proposition 2.28 that a permutation of S that is not the identity permutation can be expressed as a finite composition of transpositions. Moreover the identity permutation of S can be expressed as the composition
of any transposition with itself, provided that S has more than one element. The result follows.

Theorem 2.30 A permutation of a finite set cannot be expressed in one way as a composition of an odd number of transpositions and in another way as a composition of an even number of transpositions.

Proof We can identify the finite set with the set $\{1,2, \ldots, n\}$, where n is the number of elements in the finite set. Let $F: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ be the function sending each n-tuple $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ of integers to the product $\prod_{1 \leq j<k \leq n}\left(m_{k}-m_{j}\right)$ of the quantities $m_{k}-m_{j}$ for all pairs (j, k) of integers satisfying $1 \leq j<k \leq$ n. Note that $F\left(m_{1}, m_{2}, \ldots, m_{n}\right) \neq 0$ whenever the integers $m_{1}, m_{2}, \ldots, m_{n}$ are distinct. If we transpose two of the integers $m_{1}, m_{2}, \ldots, m_{n}$ then this changes the sign of the function F, since the number of factors of the product
$\prod_{1 \leq j<k \leq n}\left(m_{k}-m_{j}\right)$ that change sign is odd. (Indeed if we transpose m_{s} and m_{t}, where $1 \leq s<t<n$ then the factor $m_{t}-m_{s}$ changes sign, the factor $m_{t}-m_{i}$ becomes $-\left(m_{i}-m_{s}\right)$ and the factor $m_{i}-m_{s}$ becomes $-\left(m_{t}-m_{i}\right)$ for each integer i for which $s<i<t$.) But any permutation σ of the set $\{1,2, \ldots, n\}$ is a composition of transpositions. It follows that to each permutation σ of $\{1,2, \ldots, n\}$ there corresponds a number ϵ_{σ}, where $\epsilon_{\sigma}=+1$ or -1 , such that $F\left(m_{\sigma(1)}, m_{\sigma(2)}, \ldots, m_{\sigma(n)}\right)=\epsilon_{\sigma} F\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ for all integers $m_{1}, m_{2}, \ldots, m_{n}$. Moreover $\epsilon_{\sigma \tau}=\epsilon_{\sigma} \epsilon_{\tau}$ for all permutations σ and τ of the set $\{1,2, \ldots, n\}$. Also $\epsilon_{\tau}=-1$ if the permutation τ is a transposition. It follows that if σ is expressible as a composition of r transpositions then $\epsilon_{\sigma}=(-1)^{r}$. If σ is also expressible as a composition of s transpositions then $\epsilon_{\sigma}=(-1)^{s}$, and hence $(-1)^{r}=(-1)^{s}$. But then $r-s$ must be divisible by 2. The result follows.

A permutation of a finite set is said to be even if it is expressible as the composition of an even number of transpositions. A permutation of a finite set is said to be odd if it is expressible as the composition of an odd number of transpositions.

Any permutation of a finite set is expressible as a composition of transpositions (Lemma 2.29) and must therefore be either even or odd. However Theorem 2.30 ensures that a permutation of a finite set cannot be both even and odd.

Lemma 2.31 An n-cycle is even if n is odd, and is odd if n is even.
Proof An n-cycle $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is expressible as a composition of $n-1$ transpositions, since

$$
\left(a_{1} a_{2} \cdots a_{n}\right)=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \cdots\left(a_{n-1} a_{n}\right)
$$

Thus an n-cycle is even if $n-1$ is even, and is odd if $n-1$ is odd.
Example Let us classify the permutations of a set $\{a, b, c, d\}$ of 4 elements into even and odd permutations. The identity permutation is even. The six transpositions are all odd. The eight 3 -cycles are all even. The six 4cycles are all odd. The three remaining permutations $(a b)(c d),(a c)(b d)$ and $(a d)(b c)$ are all even. Note that there are 12 even permutations and 12 odd permutations of a set with 4 elements.

2.17 The Alternating Groups

A permutation of a finite set X is said to be even if it is the product of an even number of transpositions; it is said to be odd if it is the product of an odd number of transpositions. Note that the inverse of an even transposition and all products of even transpositions are themselves even transpositions.

Definition For each integer n satisfying $n>1$, the alternating group A_{n} is the subgroup of the symmetric group Σ_{n} consisting of all even permutations of the set $\{1,2, \ldots, n\}$.

Note that, for each integer n satisfying $n>1$, the alternating group A_{n} is a normal subgroup of Σ_{n} of index 2 .

Example The alternating group A_{3} consists of the identity permutation and the cycles (123) and (132), and is thus isomorphic to the cyclic group C_{3} of order 3 .

Lemma 2.32 Every even permutation of a finite set can be expressed as a product of cycles of order 3 .

Proof Let X be a finite set. Then $(a b)(b c)=(a b c)$ and $(a b)(c d)=$ $(c a d)(a b c)$ for all distinct elements a, b, c and d of X. Therefore the product of any two transpositions can be expressed as a product of cycles of order 3 . The result thus follows from the fact that an even permutation is the product of an even number of transpositions.

Lemma 2.33 All cycles of order k in the alternating group A_{n} are conjugate to one another, provided that $k \leq n-2$.

Proof Let $\left(m_{1} m_{2} \cdots m_{k}\right)$ be a cycle of order k in A_{n}. Then there exists a permutation ρ of $\{1,2, \ldots, n\}$ with the property that $\rho(i)=m_{i}$ for $i=$ $1,2, \ldots, k$. If $k \leq n-2$ then any odd permutation with this property can
be composed with the transposition that interchanges $n-1$ and n to obtain an even permutation ρ with the required property. Then $\left(m_{1} m_{2} \cdots m_{k}\right)=$ $\rho(12 \cdots k) \rho^{-1}$. Thus if $k \leq n-2$ then all cycles of order k in A_{n} are conjugate to $(12 \cdots k)$ and are therefore conjugate to one another, as required.

Example We find all normal subgroups of the alternating group A_{4}. Let

$$
V_{4}=\{\iota,(12)(34),(13)(24),(14)(23)\},
$$

where ι is the identity permutation. If ρ is an even permutation sending i to m_{i} for $i=1,2,3,4$ then $\rho(12)(34) \rho^{-1}=\left(m_{1} m_{2}\right)\left(m_{3} m_{4}\right)$. Therefore the permutations $(12)(34),(13)(24)$ and $(14)(23)$ are conjugate to one another, and hence V_{4} is a normal subgroup of A_{4} of order 4 . The group V_{4} is referred to as the Klein Viergruppe. It is isomorphic to the direct product $C_{2} \times C_{2}$ of two cyclic groups of order 2 .

Let N be a normal subgroup of A_{4} that contains a cycle $\left(m_{1} m_{2} m_{3}\right)$ of order 3. Now $\rho\left(m_{1} m_{2} m_{3}\right) \rho^{-1}=\left(\rho\left(m_{1}\right) \rho\left(m_{2}\right) \rho\left(m_{3}\right)\right)$ for all $\rho \in A_{4}$. Therefore any cycle in A_{4} of order 3 is conjugate to either ($m_{1} m_{2} m_{3}$) or to $\left(m_{1} m_{3} m_{2}\right)$. But $\left(m_{1} m_{3} m_{2}\right) \in N$, since $\left(m_{1} m_{3} m_{2}\right)=\left(m_{1} m_{2} m_{3}\right)^{2}$. Therefore every cycle of order 3 in A_{4} belongs to the normal subgroup N. But then $N=A_{4}$, since A_{4} is generated by cycles of order 3 (Lemma 2.32). We have thus shown that if a normal subgroup N of A_{4} contains a cycle of order 3 then $N=A_{4}$.

Now let N be a normal subgroup of A_{4} that does not contain any cycle of order 3. Then $N \subset V_{4}$, since all elements of $A_{4} \backslash V_{4}$ are cycles of order 3. But the only normal subgroups of A_{4} that are contained in V_{4} are $\{\iota\}$ and V_{4} itself, since the three elements of $V_{4} \backslash\{\iota\}$ are conjugate to one another.

We conclude that the normal subgroups of A_{4} are the trivial group $\{\iota\}$, the Klein Viergruppe V_{4} and A_{4} itself.

We recall that a group G is simple if and only if the only normal subgroups of G are G itself and the trivial subgroup whose only element is the identity element of G. The alternating group A_{4} is not simple. We shall prove that A_{n} is simple when $n \geq 5$.

Lemma 2.34 Let N be a non-trivial normal subgroup of the alternating group A_{n}, where $n \geq 5$. Then there exists $\sigma \in N$, where σ is not the identity permutation, and $a \in\{1,2, \ldots, n\}$ such that $\sigma(a)=a$.

Proof Let $X=\{1,2, \ldots, n\}$. The proof divides into two cases, depending on whether or not the normal subgroup N contains a permutation ρ of X with the property that ρ^{2} is not the identity permutation.

Suppose that the normal subgroup N contains a permutation ρ of X with the property that ρ^{2} is not the identity permutation. Then there exists $a \in X$ such that $\rho(\rho(a)) \neq a$. Let $b=\rho(a)$ and $c=\rho(b)$. Then the elements a, b and c are distinct. Choose elements d and e of X such that a, b, c, d and e are distinct. (This is possible since the set X has n elements, where $n \geq 5$.) Let $\rho^{\prime}=(c d e) \rho(c d e)^{-1}$. Then $\rho^{\prime} \in N$ (since $\rho \in N$ and N is a normal subgroup), $\rho^{\prime}(a)=b$ and $\rho^{\prime}(b)=d$. Now $\rho^{\prime} \neq \rho$, since $\rho^{\prime}(b) \neq \rho(b)$. Thus if $\sigma=\rho^{-1} \rho^{\prime}$ then $\sigma \in N, \sigma(a)=a$, and σ is not the identity permutation.

It remains to prove the result in the case where ρ^{2} is the identity permutation for all $\rho \in N$. In this case choose $\rho \in N$, where ρ is not the identity permutation, let a be an element of X for which $\rho(a) \neq a$, and let $b=\rho(a)$. The permutation ρ is even (since it belongs to the alternating group A_{n}), and therefore ρ cannot be the transposition $(a b)$. It follows that there exists an element c, distinct from a and b, such that $\rho(c) \neq c$. Let $d=\rho(c)$. Then the elements a, b, c and d of X are distinct. Choose an element e of X which is distinct from a, b, c and d. (This is possible since the set X has n elements, where $n \geq 5$.) Let $\rho^{\prime}=(c d e) \rho(c d e)^{-1}$. Then $\rho^{\prime}(a)=b$ and $\rho^{\prime}(d)=e$. Now $\rho^{\prime} \neq \rho$, since $\rho^{\prime}(d) \neq \rho(d)$. Thus if $\sigma=\rho^{-1} \rho^{\prime}$ then $\sigma \in N, \sigma(a)=a$, and σ is not the identity permutation.

Lemma 2.35 Let N be a normal subgroup of A_{n}, where $n \geq 5$. If N contains a 3-cycle then $N=A_{n}$.

Proof Suppose that N contains a 3 -cycle. Then N contains every 3 -cycle of A_{n}, since all 3-cycles in A_{n} are conjugate (Lemma 2.33). But then N contains every even permutation, since every even permutation is the identity permutation, a 3 -cycle or a finite product of 3 -cycles (Lemma 2.32). Thus $N=A_{n}$.

Theorem 2.36 The alternating group A_{n} is simple when $n \geq 5$.
Proof First we prove that A_{5} is simple. Let N be a non-trivial normal subgroup of A_{5}. We shall show that $N \cap H$ is non-trivial, where $H=\{\rho \in$ $\left.A_{5}: \rho(5)=5\right\}$. Then H is a subgroup of A_{5} that is isomorphic to A_{4}.

It follows from Lemma 2.34 that there exists $\sigma \in N$, where σ is not the identity permutation, and $a \in\{1,2,3,4,5\}$ such that $\sigma(a)=a$. Choose $\rho \in A_{5}$ such that $\rho(a)=5$, and let $\sigma^{\prime}=\rho \sigma \rho^{-1}$. Then $\sigma^{\prime} \in N$ and $\sigma^{\prime}(5)=5$, and therefore $\sigma^{\prime} \in H \cap N$. But σ^{\prime} is not the identity permutation. Thus $H \cap N$ is a non-trivial normal subgroup of H. But the subgroup H of A_{5} is isomorphic to A_{4} (since each permutation of $\{1,2,3,4\}$ can be regarded as a permutation of $\{1,2,3,4,5\}$ that fixes 5). It follows from this that $H \cap N$
must contain the permutations (12)(34), (13)(24) and (14)(23) since the two non-trivial normal subgroups of A_{4} each contain these permutations. But then the normal subgroup N of A_{5} contains also the permutation (12)(45), since $(12)(45)=(345)(12)(34)(345)^{-1}$. It follows that N contains the cycle (345), since $(345)=(12)(34)(12)(45)$. It follows from Lemma 2.35 that $N=A_{5}$. Thus the group A_{5} is simple.

We now prove that A_{n} is simple for $n>5$ by induction on n. Thus suppose that $n>5$ and the group A_{n-1} is simple. Let N be a non-trivial normal subgroup of A_{n}, and let $H=\left\{\rho \in A_{n}: \rho(n)=n\right\}$. It follows from Lemma 2.34 that there exists $\sigma \in N$, where σ is not the identity permutation, and $a \in\{1,2, \ldots, n\}$ such that $\sigma(a)=a$. Choose $\rho \in A_{n}$ such that $\rho(a)=n$, and let $\sigma^{\prime}=\rho \sigma \rho^{-1}$. Then $\sigma^{\prime} \in N$ and $\sigma^{\prime}(n)=n$, and therefore $\sigma^{\prime} \in H \cap N$. But σ^{\prime} is not the identity permutation. Thus $H \cap N$ is a non-trivial normal subgroup of H. But the subgroup H of A_{n} is simple, since it is isomorphic to A_{n-1}. It follows that $N \cap H=H$, and thus $H \subset N$. But then N contains a 3 -cycle, and therefore $N=A_{n}$ (Lemma 2.35). Thus the group A_{n} is simple. We conclude by induction on n that the group A_{n} is simple whenever $n \geq 5$, as required.

2.18 Normal Subgroups of the Symmetric Groups

We can now find all normal subgroups of the symmetric groups Σ_{n}. If N is a normal subgroup of Σ_{n} then $N \cap A_{n}$ is a normal subgroup of A_{n}. Moreover it follows from the First Isomorphism Theorem (Theorem 2.23) that $N /(N \cap$ $\left.A_{n}\right) \cong N A_{n} / A_{n}$. But $N A_{n} / A_{n}$ is a subgroup of Σ_{n} / A_{n}, and $\left|\Sigma_{n} / A_{n}\right|=2$. Therefore either $N \subset A_{n}$ or else $N \cap A_{n}$ is a subgroup of N of index 2 .

Example We show that if $n \geq 5$ then the only normal subgroups of Σ_{n} are the trivial subgroup, the alternating group A_{n} and Σ_{n} itself. Now these subgroups are all normal subgroups of Σ_{n}. Moreover the trivial subgroup and A_{n} are the only normal subgroups of Σ_{n} contained in A_{n}, since A_{n} is simple when $n \geq 5$ (Theorem 2.36).

Let N be a normal subgroup of Σ_{n} that is not contained in A_{n}. Then $N \cap A_{n}$ is a normal subgroup of A_{n}. Now if $N \cap A_{n}$ were the trivial subgroup then N would be a subgroup of Σ_{n} of order 2 . But one can readily verify that Σ_{n} contains no normal subgroup of order 2 unless $n=2$, in which case A_{2} is itself the trivial group. It follows that $N \cap A_{n}=A_{n}$, and hence $N=\Sigma_{n}$. We have therefore shown that if $n \geq 5$ then the only normal subgroups of Σ_{n} are the trivial subgroup, the alternating group A_{n} and Σ_{n} itself.

Example We now show that the only normal subgroups of the symmetric
group Σ_{4} are the trivial subgroup, the Klein Viergruppe V_{4}, the alternating group A_{4} and Σ_{4} itself.

The trivial group and the groups V_{4} and A_{4} are normal subgroups of Σ_{4}. Moreover they are the only normal subgroups of Σ_{4} contained in A_{4}, since they are the only normal subgroups of A_{4}.

Let N be a normal subgroup of Σ_{4} that is not contained in A_{4}. Then $N \cap A_{4}$ is a normal subgroup of A_{4}. One can readily verify that Σ_{4} contains no normal subgroup of order 2 . It follows that $V_{4} \subset N$, since only normal subgroups of A_{4} other than the trivial subgroup are the groups V_{4} and A_{4}. Now the only odd permutations in Σ_{4} are transpositions and cycles of order 4. Moreover if N contains a cycle of order 4 then N contains a transposition, since $V_{4} \subset N$ and

$$
\left(m_{1} m_{2}\right)\left(m_{3} m_{4}\right)\left(m_{1} m_{2} m_{3} m_{4}\right)=\left(m_{2} m_{4}\right)
$$

for all cycles $\left(m_{1} m_{2} m_{3} m_{4}\right)$ of order 4 . It follows that if N is a normal subgroup of Σ_{4} that is not contained in A_{4} then N must contain at least one transposition. But then N contains all transpositions, and therefore $N=\Sigma_{4}$. This shows that the only normal subgroups of Σ_{4} are the trivial group, the Klein Viergruppe V_{4}, the alternating group A_{4} and Σ_{4} itself.

2.19 Finitely Generated Abelian Groups

Let H be a subgroup of the additive group \mathbb{Z}^{n} consisting of all n-tuples of integers, with the operation of (vector) addition. A list $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{r}$ of elements of \mathbb{Z}^{n} is said to constitute an integral basis (or \mathbb{Z}-basis) of H if the following conditions are satisfied:

- the element $m_{1} \mathbf{b}_{1}+m_{2} \mathbf{b}_{2}+\cdots+m_{r} \mathbf{b}_{r}$ belongs to H for all integers $m_{1}, m_{2}, \ldots, m_{r}$;
- given any element \mathbf{h} of H, there exist uniquely determined integers $m_{1}, m_{2}, \ldots, m_{r}$ such that $\mathbf{h}=m_{1} \mathbf{b}_{1}+m_{2} \mathbf{b}_{2}+\cdots+m_{r} \mathbf{b}_{r}$.

Note that elements $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ of \mathbb{Z}^{n} constitute an integral basis of \mathbb{Z}^{n} if and only if every element of \mathbb{Z}^{n} is uniquely expressible as a linear combination of $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ with integer coefficients. It follows from basic linear algebra that the rows of an $n \times n$ matrix of integers constitute an integral basis of \mathbb{Z}^{n} if and only if the determinant of that matrix is ± 1.

Theorem 2.37 Let H be a non-trivial subgroup of \mathbb{Z}^{n}. Then there exists an integral basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ of \mathbb{Z}^{n}, a positive integer s, where $s \leq n$, and positive integers $k_{1}, k_{2}, \ldots, k_{s}$ for which $k_{1} \mathbf{b}_{1}, k_{2} \mathbf{b}_{2}, \ldots, k_{s} \mathbf{b}_{s}$ is an integral basis of H.

Proof We prove the result by induction on n. The result is clearly true when $n=1$, since every non-trivial subgroup of \mathbb{Z} is of the form $k \mathbb{Z}$ for some positive integer k. Suppose therefore that $n>1$ and that the result holds for all subgroups of \mathbb{Z}^{n-1}. We must show that the result then holds for all subgroups H of \mathbb{Z}^{n}.

Let k_{1} be the smallest strictly positive integer for which there exists some integral basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ of \mathbb{Z}^{n} and some element of H of the form $m_{1} \mathbf{u}_{1}+$ $m_{2} \mathbf{u}_{2}+\cdots+m_{n} \mathbf{u}_{n}$ where $m_{1}, m_{2}, \ldots, m_{n}$ are integers and $m_{i}=k_{1}$ for some integer i satisfying $1 \leq i \leq n$. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be such a basis, with $i=1$, and let \mathbf{h}_{0} be an element of H for which $\mathbf{h}_{0}=m_{1} \mathbf{u}_{1}+m_{2} \mathbf{u}_{2}+\cdots+m_{n} \mathbf{u}_{n}$, where $m_{1}, m_{2}, \ldots, m_{n}$ are integers and $m_{1}=k_{1}$.

We show that each coefficient m_{i} is divisible by k_{1}. Now, for each i, there exist integers q_{i} and r_{i} such that $m_{i}=q_{i} k_{1}+r_{i}$ and $0 \leq r_{i}<k_{1}$. Let $\mathbf{b}_{1}=\mathbf{u}_{1}+\sum_{i=2}^{n} q_{i} \mathbf{u}_{i}$. Then $\mathbf{b}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ is an integral basis of \mathbb{Z}^{n} and

$$
\mathbf{h}_{0}=k_{1} \mathbf{b}_{1}+\sum_{i=2}^{n} r_{i} \mathbf{u}_{i} .
$$

The choice of k_{1} now ensures that the coefficients r_{i} cannot be strictly positive (as they are less than k_{1}), and therefore $r_{i}=0$ and $m_{i}=q_{i} k_{1}$ for $i=$ $2,3, \ldots, n$. Moreover $\mathbf{h}_{0}=k_{1} \mathbf{b}_{1}$.

Now let $\varphi: \mathbb{Z}^{n-1} \rightarrow \mathbb{Z}^{n}$ be the injective homomorphism sending each element $\left(m_{2}, m_{3}, \ldots, m_{n}\right)$ of \mathbb{Z}^{n-1} to $\sum_{i=2}^{n} m_{i} \mathbf{u}_{i}$, and let $\tilde{H}=\varphi^{-1}(H)$. Then, given any element \mathbf{h} of H, there exist an integer m and an element $\tilde{\mathbf{h}}$ of \mathbb{Z}^{n-1} such that $\mathbf{h}=m \mathbf{b}_{1}+\varphi(\tilde{\mathbf{h}})$. Moreover m and $\tilde{\mathbf{h}}$ are uniquely determined by \mathbf{h}, since $\mathbf{b}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ is an integral basis of \mathbb{Z}^{n}. Let $m=q k_{1}+r$, where q and r are integers and $0 \leq r<k_{1}$. Then $\mathbf{h}-q \mathbf{h}_{0}=r \mathbf{b}_{1}+\varphi(\tilde{\mathbf{h}})$, where $\varphi(\tilde{\mathbf{h}})$ is expressible as a linear combination of $\mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ with integer coefficients. The choice of k_{1} now ensures that r cannot be strictly positive, and therefore $r=0$. Then $\varphi(\tilde{\mathbf{h}}) \in H$, and hence $\tilde{\mathbf{h}} \in \tilde{H}$. We conclude from this that, given any element \mathbf{h} of H, there exist an integer q and an element $\tilde{\mathbf{h}}$ of \tilde{H} such that $\mathbf{h}=q k_{1} \mathbf{b}_{1}+\varphi(\tilde{\mathbf{h}})$. Moreover q and \mathbf{h} are uniquely determined by \mathbf{h}.

Now the induction hypothesis ensures the existence of an integral basis $\tilde{\mathbf{b}}_{2}, \tilde{\mathbf{b}}_{3}, \ldots, \tilde{\mathbf{b}}_{n}$ of \mathbb{Z}^{n-1} for which there exist positive integers $k_{2}, k_{3}, \ldots, k_{s}$ such that $k_{2} \tilde{\mathbf{b}}_{2}, k_{3} \tilde{\mathbf{b}}_{3}, \ldots, k_{s} \tilde{\mathbf{b}}_{s}$ is an integral basis of \tilde{H}. Let $\mathbf{b}_{i}=\varphi\left(\tilde{\mathbf{b}}_{i}\right)$ for each integer i between 2 and n. One can then readily verify that $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ is an integral basis of \mathbb{Z}^{n} and $k_{1} \mathbf{b}_{1}, k_{2} \mathbf{b}_{2}, \ldots, k_{s} \mathbf{b}_{s}$ is an integral basis of H, as required.

An Abelian group G is generated by elements $g_{1}, g_{2}, \ldots, g_{n}$ if and only if every element of G is expressible in the form $g_{1}^{m_{1}} g_{2}^{m_{2}} \cdots g_{n}^{m_{n}}$ for some integers $m_{1}, m_{2}, \ldots, m_{n}$.

Lemma 2.38 A non-trivial Abelian group G is finitely generated if and only if there exists a positive integer n and some surjective homomorphism $\theta: \mathbb{Z}^{n} \rightarrow$ G.

Proof Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ be the integral basis of \mathbb{Z}^{n} with $\mathbf{e}_{1}=(1,0, \ldots, 0)$, $\mathbf{e}_{2}=(0,1,0, \ldots, 0), \ldots, \mathbf{e}_{n}=(0, \ldots, 0,1)$. If there exists a surjective homomorphism $\theta: \mathbb{Z}^{n} \rightarrow G$ then G is generated by $g_{1}, g_{2}, \ldots, g_{n}$, where $g_{i}=\theta\left(\mathbf{e}_{i}\right)$ for $i=1,2, \ldots, n$. Conversely if G is generated by $g_{1}, g_{2}, \ldots, g_{n}$ then there is a surjective homomorphism $\theta: \mathbb{Z}^{n} \rightarrow G$ that sends $\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$ to $g_{1}^{m_{1}} g_{2}^{m_{2}} \cdots g_{n}^{m_{n}}$.

Theorem 2.39 Let G be a non-trivial finitely generated Abelian group. Then there exist a positive integer n and a non-negative integer s between 0 and n, such that if $s=0$ then $G \cong \mathbb{Z}^{n}$, and if $s>0$ then there exist positive integers $k_{1}, k_{2}, \ldots, k_{s}$ such that

$$
G \cong C_{k_{1}} \times C_{k_{2}} \times \cdots \times C_{k_{s}} \times \mathbb{Z}^{n-s}
$$

where $C_{k_{i}}$ is a cyclic group of order k_{i} for $i=1,2, \ldots, s$.
Proof There exists a positive integer n and some surjective homomorphism $\theta: \mathbb{Z}^{n} \rightarrow G$, since G is finitely-generated. Let H be the kernel of θ. If H is trivial then the homomorphism θ is an isomorphism between \mathbb{Z}^{n} and G. If H is non-trivial then G is isomorphic to \mathbb{Z}^{n} / H, and there exists an integral basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ of \mathbb{Z}^{n}, a positive integer s, where $s \leq n$, and positive integers $k_{1}, k_{2}, \ldots, k_{s}$ for which $k_{1} \mathbf{b}_{1}, k_{2} \mathbf{b}_{2}, \ldots, k_{s} \mathbf{b}_{s}$ is an integral basis of H (Theorem 2.37). Then the group \mathbb{Z}^{n} / H, and thus G, is isomorphic to $C_{k_{1}} \times C_{k_{2}} \times \cdots \times C_{k_{s}} \times \mathbb{Z}^{n-s}$, where C_{i} is a cyclic group of order k_{i} for $i=1,2, \ldots, s$. Indeed there is a well-defined homomorphism $\varphi: \mathbb{Z}^{n} \rightarrow$ $C_{k_{1}} \times C_{k_{2}} \times \cdots \times C_{k_{s}} \times \mathbb{Z}^{n-s}$ which sends each element

$$
m_{1} \mathbf{b}_{1}+m_{2} \mathbf{b}_{2}+\cdots+m_{n} \mathbf{b}_{n}
$$

of \mathbb{Z}^{n} to $\left(a_{1}^{m_{1}}, a_{2}^{m_{2}}, \ldots, a_{s}^{m_{s}}, m_{s+1}, \ldots, m_{n}\right)$, where a_{i} is a generator of the cyclic group C_{i} for $i=1,2, \ldots, s$. The homomorphism φ is surjective, and its kernel is the subgroup H. Therefore $G \cong \mathbb{Z}^{n} / H \cong C_{k_{1}} \times C_{k_{2}} \times \cdots \times C_{k_{s}} \times \mathbb{Z}^{n-s}$, as required.

Corollary 2.40 Let G be a non-trivial finite Abelian group. Then there exist positive integers $k_{1}, k_{2}, \ldots, k_{n}$ such that $G \cong C_{k_{1}} \times C_{k_{2}} \times \cdots \times C_{k_{n}}$, where $C_{k_{i}}$ is a cyclic group of order k_{i} for $i=1,2, \ldots, n$.

With some more work it is possible to show that the positive integers $k_{1}, k_{2}, \ldots, k_{s}$ in Theorem 2.39 may be chosen such that $k_{1}>1$ and k_{i-1} divides k_{i} for $i=2,3, \ldots, s$, and that the Abelian group is then determined up to isomorphism by the integer n and the sequence of positive integers $k_{1}, k_{2}, \ldots, k_{s}$.

2.20 The Class Equation of a Finite Group

Definition The centre $Z(G)$ of a group G is the subgroup of G defined by

$$
Z(G)=\{g \in G: g h=h g \text { for all } h \in G\} .
$$

One can verify that the centre of a group G is a normal subgroup of G.
Let G be a finite group, and let $Z(G)$ be the centre of G. Then $G \backslash Z(G)$ is a disjoint union of conjugacy classes. Let r be the number of conjugacy classes contained in $G \backslash Z(G)$, and let $n_{1}, n_{2}, \ldots, n_{r}$ be the number of elements in these conjugacy classes. Then $n_{i}>1$ for all i, since the centre $Z(G)$ of G is the subgroup of G consisting of those elements of G whose conjugacy class contains just one element. Now the group G is the disjoint union of its conjugacy classes, and therefore

$$
|G|=|Z(G)|+n_{1}+n_{2}+\cdots+n_{r} .
$$

This equation is referred to as the class equation of the group G.
Definition Let g be an element of a group G. The centralizer $C(g)$ of g is the subgroup of G defined by $C(g)=\{h \in G: h g=g h\}$.

Proposition 2.41 Let G be a finite group, and let p be a prime number. Suppose that p^{k} divides the order of G for some positive integer k. Then either p^{k} divides the order of some proper subgroup of G, or else p divides the order of the centre of G.

Proof Choose elements $g_{1}, g_{2}, \ldots, g_{r}$ of $G \backslash Z(G)$, where $Z(G)$ is the centre of G, such that each conjugacy class included in $G \backslash Z(G)$ contains exactly one of these elements. Let n_{i} be the number of elements in the conjugacy class of g_{i} and let $C\left(g_{i}\right)$ be the centralizer of g_{i} for each i. Then $C\left(g_{i}\right)$ is a proper subgroup of G, and $|G|=n_{i}\left|C\left(g_{i}\right)\right|$. Thus if p^{k} divides $|G|$ but does not divide the order of any proper subgroup of G then p must divide n_{i} for $i=1,2, \ldots, r$. Examination of the class equation $|G|=|Z(G)|+n_{1}+n_{2}+\cdots+n_{r}$ now shows that p divides $|Z(G)|$, as required.

2.21 Cauchy's Theorem

Theorem 2.42 (Cauchy) Let G be an finite group, and let p be a prime number that divides the order of G. Then G contains an element of order p.

Proof We prove the result by induction on the order of G. Thus suppose that every finite group whose order is divisible by p and less than $|G|$ contains an element of order p. If p divides the order of some proper subgroup of G then that subgroup contains the required element of order p. If p does not divide the order of any proper subgroup of G then Proposition 2.41 ensures that p divides the order of the centre $Z(G)$ of G, and thus $Z(G)$ cannot be a proper subgroup of G. But then $G=Z(G)$ and the group G is Abelian.

Thus let G be an Abelian group whose order is divisible by p, and let H be a proper subgroup of G that is not contained in any larger proper subgroup. If $|H|$ is divisible by p then the induction hypothesis ensures that H contains the required element of order p, since $|H|<|G|$. Suppose then that $|H|$ is not divisible by p. Choose $g \in G \backslash H$, and let C be the cyclic subgroup of G generated by g. Then $H C=G$, since $H C \neq H$ and $H C$ is a subgroup of G containing H. It follows from the First Isomorphism Theorem (Theorem 2.23) that $G / H \cong C / H \cap C$. Now p divides $|G / H|$, since $|G / H|=|G| /|H|$ and p divides $|G|$ but not $|H|$. Therefore p divides $|C|$. Thus if $m=|C| / p$ then g^{m} is the required element of order p. This completes the proof of Cauchy's Theorem.

2.22 The Structure of p-Groups

Definition Let p be a prime number. A p-group is a finite group whose order is some power p^{k} of p.

Lemma 2.43 Let p be a prime number, and let G be a p-group. Then there exists a normal subgroup of G of order p that is contained in the centre of G.

Proof Let $|G|=p^{k}$. Then p^{k} divides the order of G but does not divide the order of any proper subgroup of G. It follows from Proposition 2.41 that p divides the order of the centre of G. It then follows from Cauchy's Theorem (Theorem 2.42) that the centre of G contains some element of order p. This element generates a cyclic subgroup of order p, and this subgroup is normal since its elements commute with every element of G.

Proposition 2.44 Let G be a p-group, where p is some prime number, and let H be a proper subgroup of G. Then there exists some subgroup K of G such that $H \triangleleft K$ and K / H is a cyclic group of order p.

Proof We prove the result by induction on the order of G. Thus suppose that the result holds for all p-groups whose order is less than that of G. Let Z be the centre of G. Then $Z H$ is a well-defined subgroup of G, since Z is a normal subgroup of G.

Suppose that $Z H \neq H$. Then H is a normal subgroup of $Z H$. The quotient group $Z H / H$ is a p-group, and contains a subgroup K_{1} of order p (Lemma 2.43). Let $K=\left\{g \in Z H: g H \in K_{1}\right\}$. Then $H \triangleleft K$ and $K / H \cong K_{1}$, and therefore K is the required subgroup of G.

Finally suppose that $Z H=H$. Then $Z \subset H$. Let $H_{1}=\{h Z: h \in H\}$. Then H_{1} is a subgroup of G / Z. But G / Z is a p-group, and $|G / Z|<|G|$, since $|Z|>p$ (Lemma 2.43). The induction hypothesis ensures the existence of a subgroup K_{1} of G / Z such that $H_{1} \triangleleft K_{1}$ and K_{1} / H_{1} is cyclic of order p. Let $K=\left\{g \in G: g Z \in K_{1}\right\}$. Then $H \triangleleft K$ and $K / H \cong K_{1} / H_{1}$. Thus K is the required subgroup of G.

Repeated applications of Proposition 2.44 yield the following result.
Corollary 2.45 Let G be a finite group whose order is a power of some prime number p. Then there exist subgroups $G_{0}, G_{1}, \ldots, G_{n}$ of G, where G_{0} is the trivial subgroup and $G_{n}=G$, such that $G_{i-1} \triangleleft G_{i}$ and G_{i} / G_{i-1} is a cyclic group of order p for $i=1,2, \ldots, n$.

2.23 The Sylow Theorems

Definition Let G be a finite group, and let p be a prime number dividing the order $|G|$ of G. A p-subgroup of G is a subgroup whose order is some power of p. A Sylow p-subgroup of G is a subgroup whose order is p^{k}, where k is the largest natural number for which p^{k} divides $|G|$.

Theorem 2.46 (First Sylow Theorem) Let G be a finite group, and let p be a prime number dividing the order of G. Then G contains a Sylow p-subgroup.

Proof We prove the result by induction on the order of G. Thus suppose that all groups whose order is less than that of G contain the required Sylow p-subgroups. Let k be the largest positive integer for which p^{k} divides $|G|$. If p^{k} divides the order of some proper subgroup H of G then the induction hypothesis ensures that H contains the required Sylow p-subgroup of order p^{k}. If p^{k} does not divide the order of any proper subgroup of G then p divides the order of the centre $Z(G)$ of G (Proposition 2.41). It follows from Cauchy's Theorem (Theorem 2.42) that $Z(G)$ contains an element of order p, and this element generates a normal subgroup N of G of order p. The induction hypothesis then ensures that G / N has a Sylow p-subgroup L of
order p^{k-1}, since $|G / N|=|G| / p$. Let $K=\{g \in G: g N \in L\}$. Then $|K|=p|L|=p^{k}$, and thus K is the required Sylow p-subgroup of G.

Theorem 2.47 (Second Sylow Theorem) Let G be a finite group, and let p be a prime number dividing the order of G. Then all Sylow p-subgroups of G are conjugate, and any p-subgroup of G is contained in some Sylow psubgroup of G. Moreover the number of Sylow p-subgroups in G divides the order of $|G|$ and is congruent to 1 modulo p.

Proof Let K be a Sylow p-subgroup of G, and let X be the set of left cosets of K in G. Let H be a p-subgroup of G. Then H acts on X on the left, where $h(g K)=h g K$ for all $h \in H$ and $g \in G$. Moreover $h(g K)=g K$ if and only if $g^{-1} h g \in K$. Thus an element $g K$ of X is fixed by H if and only if $g^{-1} H g \subset K$.

Let $|G|=p^{k} m$, where k and m are positive integers and m is coprime to p. Then $|K|=p^{k}$. Now the number of left cosets of K in G is $|G| /|K|$. Thus the set X has m elements. Now the number of elements in any orbit for the action of H on X divides the order of H, since it is the index in H of the stabilizer of some element of that orbit (Lemma 2.26). But then the number of elements in each orbit must be some power of p, since H is a p-group. Thus if an element of X is not fixed by H then the number of elements in its orbit is divisible by p. But X is a disjoint union of orbits under the action of H on X. Thus if m^{\prime} denotes the number of elements of X that are fixed by H then $m-m^{\prime}$ is divisible by p.

Now m is not divisible by p. It follows that $m^{\prime} \neq 0$, and m^{\prime} is not divisible by p. Thus there exists at least one element g of G such that $g^{-1} H g \subset K$. But then H is contained in the Sylow p-subgroup $g K g^{-1}$. Thus every p-subgroup is contained in a Sylow p-subgroup of K, and this Sylow p-subgroup is a conjugate of the given Sylow p-subgroup K. In particular any two Sylow p-subgroups are conjugate.

It only remains to show that the number of Sylow p-subgroups in G divides the order of $|G|$ and is congruent to 1 modulo p. Now choosing the p-subgroup H of G to be the Sylow p-subgroup K itself enables us to deduce that $g^{-1} K g=K$ for some $g \in G$ if and only if $g K$ is a fixed point for the action of K on X. But the number of elements g of G for which $g K$ is a fixed point is $m^{\prime}|K|$, where m^{\prime} is the number of fixed points in X. It follows that the number of elements g of G for which $g^{-1} K g=K$ is $p^{k} m^{\prime}$. But every Sylow p-subgroup of G is of the form $g^{-1} \mathrm{Kg}$ for some $g \in G$. It follows that the number n of Sylow p-subgroups in G is given by $n=|G| / p^{k} m^{\prime}=m / \mathrm{m}^{\prime}$. In particular n divides $|G|$. Now we have already shown that $m-m^{\prime}$ is divisible by p. It follows that m^{\prime} is coprime to p, since m is coprime to p.

Also $m-m^{\prime}$ is divisible by m^{\prime}, since $\left(m-m^{\prime}\right) / m^{\prime}=n-1$. Putting these results together, we see that $m-m^{\prime}$ is divisible by $m^{\prime} p$, and therefore $n-1$ is divisible by p. Thus n divides $|G|$ and is congruent to 1 modulo p, as required.

2.24 Solvable Groups

Definition A group G is said to be solvable (or soluble) if there exists a finite sequence $G_{0}, G_{1}, \ldots, G_{n}$ of subgroups of G, where $G_{0}=\{1\}$ and $G_{n}=G$, such that G_{i-1} is normal in G_{i} and G_{i} / G_{i-1} is Abelian for $i=1,2, \ldots, n$.

Example The symmetric group Σ_{4} is solvable. Indeed let V_{4} be the Klein Viergruppe consisting of the identity permutation ι and the permutations (12)(34), (13)(24) and (14)(23), and let A_{4} be the alternating group consisting of all even permutations of $\{1,2,3,4\}$. Then $\{\iota\} \triangleleft V_{4} \triangleleft A_{4} \triangleleft \Sigma_{4}, V_{4}$ is Abelian, A_{4} / V_{4} is cyclic of order 3 , and Σ_{4} / A_{4} is cyclic of order 2 .

Lemma 2.48 Let G be a group, let H_{1} and H_{2} be subgroups of G, where $H_{1} \triangleleft H_{2}$, and let $J_{1}=H_{1} \cap N, J_{2}=H_{2} \cap N, K_{1}=H_{1} N / N$ and $K_{2}=$ $H_{2} N / N$, where N is some normal subgroup of G. Then $J_{1} \triangleleft J_{2}$ and $K_{1} \triangleleft K_{2}$. Moreover there exists a normal subgroup of H_{2} / H_{1} isomorphic to J_{2} / J_{1}, and the quotient of H_{2} / H_{1} by this normal subgroup is isomorphic to K_{2} / K_{1}.

Proof It is a straightforward exercise to verify that $J_{1} \triangleleft J_{2}$ and $K_{1} \triangleleft K_{2}$. Let $\theta: H_{2} \rightarrow K_{2}$ be the surjective homomorphism sending $h \in H_{2}$ to the coset $h N$. Now θ induces a well-defined surjective homomorphism $\psi: H_{2} / H_{1} \rightarrow K_{2} / K_{1}$, since $\theta\left(H_{1}\right) \subset K_{1}$. Also $\theta^{-1}\left(K_{1}\right)=H_{2} \cap\left(H_{1} N\right)$. But $H_{2} \cap\left(H_{1} N\right)=H_{1}\left(H_{2} \cap\right.$ N), for if $a \in H_{1}, b \in N$ and $a b \in H_{2}$ then $b \in H_{2} \cap N$. Therefore

$$
\operatorname{ker} \psi=\theta^{-1}\left(K_{1}\right) / H_{1}=H_{1}\left(H_{2} \cap N\right) / H_{1} \cong H_{2} \cap N / H_{1} \cap N=J_{2} / J_{1}
$$

by the First Isomorphism Theorem (Theorem 2.23). Moreover the quotient of H_{2} / H_{1} by the normal subgroup $\operatorname{ker} \psi$ is isomorphic to the image K_{2} / K_{1} of ψ. Thus ker ψ is the required normal subgroup of H_{2} / H_{1}.

Proposition 2.49 Let G be a group, and let H be a subgroup of G. Then
(i) if G is solvable then any subgroup H of G is solvable;
(ii) if G is solvable then G / N is solvable for any normal subgroup N of G;
(iii) if N is a normal subgroup of G and if both N and G / N are solvable then G is solvable.

Proof Suppose that G is solvable. Let $G_{0}, G_{1}, \ldots, G_{m}$ be a finite sequence of subgroups of G, where $G_{0}=\{1\}, G_{n}=G$, and $G_{i-1} \triangleleft G_{i}$ and G_{i} / G_{i-1} is Abelian for $i=1,2, \ldots, m$.

We first show that the subgroup H is solvable. Let $H_{i}=H \cap G_{i}$ for $i=0,1, \ldots, m$. Then $H_{0}=\{1\}$ and $H_{m}=H$. If $u \in H_{i}$ and $v \in H_{i-1}$ then $u v u^{-1} \in H$, since H is a subgroup of G. Also $u v u^{-1} \in G_{i-1}$, since $u \in G_{i-1}$, $v \in G_{i}$ and G_{i-1} is normal in G_{i}. Therefore $u v u^{-1} \in H_{i-1}$. Thus H_{i-1} is a normal subgroup of H_{i} for $i=1,2, \ldots, m$. Moreover

$$
\frac{H_{i}}{H_{i-1}}=\frac{G_{i} \cap H}{G_{i-1} \cap\left(G_{i} \cap H\right)}=\frac{G_{i-1}\left(G_{i} \cap H\right)}{G_{i-1}}
$$

by the First Isomorphism Theorem (Theorem 2.23), and thus H_{i} / H_{i-1} is isomorphic to a subgroup of the Abelian group G_{i} / G_{i-1}. It follows that H_{i} / H_{i-1} must itself be an Abelian group. We conclude therefore that the subgroup H of G is solvable.

Now let N be a normal subgroup of G, and let $K_{i}=G_{i} N / N$ for all i. Then K_{0} is the trivial subgroup of G / N and $K_{m}=G / N$. It follows from Lemma 2.48 that $K_{i-1} \triangleleft K_{i}$ and K_{i} / K_{i-1} is isomorphic to the quotient of G_{i} / G_{i-1} by some normal subgroup. But a quotient of any Abelian group must itself be Abelian. Thus each quotient group K_{i} / K_{i-1} is Abelian, and thus G / N is solvable.

Finally suppose that G is a group, N is a normal subgroup of G and both N and G / N are solvable. We must prove that G is solvable. Now the solvability of N ensures the existence of a finite sequence $G_{0}, G_{1}, \ldots, G_{m}$ of subgroups of N, where $G_{0}=\{1\}, G_{m}=N$, and $G_{i-1} \triangleleft G_{i}$ and G_{i} / G_{i-1} is Abelian for $i=1,2, \ldots, m$. Also the solvability of G / N ensures the existence of a finite sequence $K_{0}, K_{1}, \ldots, K_{n}$ of subgroups of G / N, where $K_{0}=N / N$, $K_{n}=G / N$, and $K_{i-1} \triangleleft K_{i}$ and K_{i} / K_{i-1} is Abelian for $i=1,2, \ldots, n$. Let G_{m+i} be the preimage of K_{i} under the the quotient homomorphism $\nu: G \rightarrow G / N$, for $i=1,2, \ldots, n$. The Second Isomorphism Theorem (Theorem 2.24) ensures that $G_{m+i} / G_{m+i-1} \cong K_{i} / K_{i-1}$ for all $i>0$. Therefore $G_{0}, G_{1}, \ldots, G_{m+n}$ is a finite sequence of subgroups of G, where $G_{0}=\{1\}$, $G_{n}=G$, and $G_{i-1} \triangleleft G_{i}$ and G_{i} / G_{i-1} is Abelian for $i=1,2, \ldots, m+n$. Thus the group G is solvable, as required.

Example The alternating group A_{n} is simple for $n \geq 5$ (see Theorem 2.36). Moreover the definition of solvable groups ensures that that any simple solvable group is cyclic, and A_{n} is not cyclic when $n \geq 5$. Therefore A_{n} is not solvable when $n \geq 5$. It then follows from Proposition 2.49 that the symmetric group Σ_{n} is not solvable when $n \geq 5$.

