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2 Topics in Group Theory

2.1 Groups

A binary operation ∗ on a set G associates to elements x and y of G a third
element x ∗ y of G. For example, addition and multiplication are binary
operations of the set of all integers.

Definition A group G consists of a set G together with a binary operation ∗
for which the following properties are satisfied:

• (x ∗ y) ∗ z = x ∗ (y ∗ z) for all elements x, y, and z of G (the Associative
Law);

• there exists an element e of G (known as the identity element of G)
such that e ∗ x = x = x ∗ e, for all elements x of G;

• for each element x of G there exists an element x′ of G (known as the
inverse of x) such that x ∗ x′ = e = x′ ∗ x (where e is the identity
element of G).

The order |G| of a finite group G is the number of elements of G.
A group G is Abelian (or commutative) if x ∗ y = y ∗ x for all elements x

and y of G.

One usually adopts multiplicative notation for groups, where the product
x ∗ y of two elements x and y of a group G is denoted by xy. The inverse of
an element x of G is then denoted by x−1. The identity element is usually
denoted by e (or by eG when it is necessary to specify explicitly the group
to which it belongs). Sometimes the identity element is denoted by 1. Thus,
when multiplicative notation is adopted, the group axioms are written as
follows:-

• (xy)z = x(yz) for all elements x, y, and z of G (the Associative Law);

• there exists an element e of G (known as the identity element of G)
such that ex = x = xe, for all elements x of G;

• for each element x of G there exists an element x−1 of G (known as
the inverse of x) such that xx−1 = e = x−1x (where e is the identity
element of G).
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The groupG is said to be Abelian (or commutative) if xy = yx for all elements
x and y of G.

It is sometimes convenient or customary to use additive notation for cer-
tain groups. Here the group operation is denoted by +, the identity element
of the group is denoted by 0, the inverse of an element x of the group is
denoted by −x. By convention, additive notation is only used for Abelian
groups. When expressed in additive notation the axioms for a Abelian group
are as follows:

• x+ y = y + x for all elements x and y of G (the Commutative Law);

• (x+y)+z = x+(y+z) for all elements x, y, and z of G (the Associative
Law);

• there exists an element 0 of G (known as the identity element or zero
element of G) such that 0 + x = x = x+ 0, for all elements x of G;

• for each element x of G there exists an element −x of G (known as
the inverse of x) such that x + (−x) = 0 = (−x) + x (where 0 is the
identity element of G).

We shall usually employ multiplicative notation when discussing general
properties of groups. Additive notation will be employed for certain groups
(such as the set of integers with the operation of addition) where this notation
is the natural one to use.

2.2 Examples of Groups

The sets of integers, rational numbers, real numbers and complex numbers
are Abelian groups, where the group operation is the operation of addition.

The sets of non-zero rational numbers, non-zero real numbers and non-
zero complex numbers are also Abelian groups, where the group operation is
the operation of multiplication.

For each positive integer m the set Zm of congruence classes of integers
modulo m is a group, where the group operation is addition of congruence
classes.

For each positive integer m the set Z∗m of congruence classes modulo m of
integers coprime to m is a group, where the group operation is multiplication
of congruence classes.

In particular, for each prime number p the set Z∗p of congruence classes
modulo p of integers not divisible by p is a group, where the group operation
is multiplication of congruence classes.
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For each positive integer n the set of all nonsingular n× n matrices is a
group, where the group operation is matrix multiplication. These groups are
not Abelian when n ≥ 2.

The set of all transformations of the plane that are of the form

(x, y) 7→ (ax+ by, cx+ dy)

with ad− bc 6= 0 is a group with respect to the operation of composition of
transformations. This group includes all rotations about the origin, and all
reflections in lines passing through the origin. It is not Abelian.

Consider a regular n-sided polygon centered at the origin. The symme-
tries of this polygon (i.e., length- and angle-preserving transformations of
the plane that map this polygon onto itself) are rotations about the origin
through an integer multiple of 2π/n radians, and reflections in the n axes of
symmetry of the polygon. The symmetries of the polygon constitute a group
of order 2n. This group is referred to as the dihedral group of order 2n.

The symmetries of a rectangle that is not a square constitute a group of
order 4. This group consists of the identity transformation, reflection in the
axis of symmetry joining the midpoints of the two shorter sides, reflection
in the axis of symmetry joining the two longer sides, and rotation though
an angle of π radians (180◦). If I denotes the identity transformation, A
and B denote the reflections in the two axes of symmetry, and C denotes
the rotation through π radians then A2 = B2 = C2 = I, AB = BA = C,
AC = CA = B and BC = CB = A. This group is Abelian: it is often
referred to as the Klein 4-group (or, in German, Kleinsche Viergruppe).

The symmetries of a regular tetrahedron in 3-dimensional space constitute
a group. Any permutation of the vertices of the tetrahedron can be effected
by an appropriate symmetry of the tetrahedron. Moreover each symmetry is
completely determined by the permutation of the vertices which it induces.
Therefore the group of symmetries of a regular tetrahedron is of order 24,
since there are 24 permutations of a set with four elements. It turns out that
this group is non-Abelian.

2.3 Cayley Tables

The algebraic structure of a finite group can be exhibited using a Cayley
table, provided that the number of elements in the group is sufficiently small.
The rows and columns of the Cayley table are labelled by the elements of
the group, and each entry in the table is the product xy of the element x
labelling its row with the element y labelling its column.

Example Let D6 be the group of symmetries of an equilateral triangle with
vertices labelled A, B and C in anticlockwise order. The elements of D6
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consist of the identity transformation I, an anticlockwise rotation R about
the centre through an angle of 2π/3 radians (i.e., 120◦), a clockwise rotation S
about the centre through an angle of 2π/3 radians, and reflections U, V and
W in the lines joining the vertices A, B and C respectively to the midpoints
of the opposite edges. Calculating the compositions of these rotations, we
obtain the following Cayley table:

I R S U V W

I I R S U V W
R R S I W U V
S S I R V W U
U U V W I R S
V V W U S I R
W W U V R S I .

Thus, for example, VU = S (i.e., the reflection U followed by the reflection V
is the rotation S), and UV = R.

Note that each element of the group occurs exactly once in each row and
in each column in the main body of the table (excluding the labels at the left
of each row and at the head of each column), This is a general property of
Cayley tables of groups which can be proved easily from the group axioms.

2.4 Elementary Properties of Groups

In what follows, we describe basic properties of a group G, using multiplica-
tive notation and denoting the identity element of the group by the letter e.

Lemma 2.1 A group G has exactly one identity element e satisfying ex =
x = xe for all x ∈ G.

Proof Suppose that f is an element of G with the property that fx = x for
all elements x of G. Then in particular f = fe = e. Similarly one can show
that e is the only element of G satisfying xe = x for all elements x of G.

Lemma 2.2 An element x of a group G has exactly one inverse x−1.

Proof We know from the axioms that the group G contains at least one
element x−1 which satisfies xx−1 = e and x−1x = e. If z is any element of
G which satisfies xz = e then z = ez = (x−1x)z = x−1(xz) = x−1e = x−1.
Similarly if w is any element of G which satisfies wx = e then w = x−1. In
particular we conclude that the inverse x−1 of x is uniquely determined, as
required.
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Lemma 2.3 Let x and y be elements of a group G. Then (xy)−1 = y−1x−1.

Proof It follows from the group axioms that

(xy)(y−1x−1) = x(y(y−1x−1)) = x((yy−1)x−1) = x(ex−1) = xx−1 = e.

Similarly (y−1x−1)(xy) = e, and thus y−1x−1 is the inverse of xy, as re-
quired.

Note in particular that (x−1)−1 = x for all elements x of a group G, since
x has the properties that characterize the inverse of the inverse x−1 of x.

Given an element x of a group G, we define xn for each positive integer n
by the requirement that x1 = x and xn = xn−1x for all n > 1. We also define
x0 = e, where e is the identity element of the group, and we define x−n to be
the inverse of xn for all positive integers n.

Theorem 2.4 Let x be an element of a group G. Then xm+n = xmxn and
xmn = (xm)n for all integers m and n.

Proof The identity xm+n = xmxn clearly holds when m = 0 and when n = 0.
The identity xm+n = xmxn can be proved for all positive integers m and n by
induction on n. The identity when m and n are both negative then follows
from the identity x−m−n = x−nx−m on taking inverses. The result when m
and n have opposite signs can easily be deduced from that where m and n
both have the same sign.

The identity xmn = (xm)n follows immediately from the definitions when
n = 0, 1 or −1. The result when n is positive can be proved by induction on
n. The result when n is negative can then be obtained on taking inverses.

If additive notation is employed for an Abelian group then the notation
‘xn’ is replaced by ‘nx’ for all integers n and elements x of the group. The
analogue of Theorem 2.4 then states that (m+n)x = mx+nx and (mn)x =
m(n(x)) for all integers m and n.

2.5 The General Associative Law

Let x1, x2, . . . , xn be elements of a group G. We define the product x1x2 · · ·xn
as follows:-

x1x2x3 = (x1x2)x3

x1x2x3x4 = (x1x2x3)x4 = ((x1x2)x3)x4

x1x2x3x4x5 = (x1x2x3x4)x5 = (((x1x2)x3)x4)x5

...

x1x2x3 · · ·xn = (x1x2 · · ·xn−1)xn = (· · · ((x1x2)x3) · · ·xn−1)xn.
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(Thus if pj = x1, x2, . . . , xj for j = 1, 2, . . . , n then pj = pj−1xj for each
j > 1.)

Now an arbitrary product of n elements of G is determined by an expres-
sion involving n elements of G together with equal numbers of left and right
parentheses that determine the order in which the product is evaluated. The
General Associative Law ensures that the value of such a product is deter-
mined only by the order in which the elements of the group occur within that
product. Thus a product of n elements of G has the value x1x2 · · ·xn, where
x1, x2, . . . , xn are the elements to be multiplied, listed in the order in which
they occur in the expression defining the product.

Example Given four elements x1, x2, x3 and x4 of a group, the products

((x1x2)x3)x4, (x1x2)(x3x4), (x1(x2x3))x4, x1((x2x3)x4), x1(x2(x3x4))

all have the same value. (Note that x1x2x3x4 is by definition the value of the
first of these expressions.)

The General Associative Law for products of four or more elements of a
group can be verified by induction on the number on the number of elements
involved.

Consider a product of n elements of the group G, where n > 3. Let these
elements be x1, x2, . . . , xn when listed in the order in which they occur in the
expression for the product. Suppose also that it is known that the General
Associative Law holds for all products involving fewer than n elements (i.e.,
any two products with fewer than n elements have the same value whenever
the same elements of G occur in both products in the same order). We must
show that the value of the product is x1x2 · · ·xn, where

x1x2 · · ·xn = (. . . (((x1x2)x3)x4) · · ·)xn

Now the first step in evaluating the product will involve multiplying some
element xr with the succeeding element xr+1. The subsequent steps will then
evaluate a product of n− 1 elements, namely the elements xi for 1 ≤ i < r,
the element xrxr+1, and the elements xi for r+1 < i ≤ n. The validity of the
General Associative Law for products of fewer than n elements then ensures
that the value p of the product is given by

p =


(x1x2)x3 · · ·xn if r = 1;
x1(x2x3)x4 · · ·xn if r = 2;
x1x2(x3x4)x5 · · ·xn if r = 3 (and n > 4);
...
x1x2 · · ·xn−2(xn−1xn) if r = n− 1.
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Also the General Associativity Law for products of fewer than n elements
ensures that if r < n− 1 then

x1x2 · · ·xr−1(xrxr+1) = x1x2 · · ·xr+1

and thus p = x1x2 · · ·xn. Thus in order to verify the General Associative
Law for products of n elements it only remains to verify that

x1x2 · · ·xn−2(xn−1xn) = x1x2 · · ·xn.

The case when n = 3 is the Associative Law for products of three elements.
For n > 3 let y be the product x1x2, · · ·xn−2 of the elements x1, x2, . . . , xn−2

(with y = x1x2 in the case when n = 4). Then

x1x2 · · ·xn−2(xn−1xn) = y(xn−1xn) = (yxn−1)xn = (x1x2 · · ·xn−1)xn

= x1x2 · · ·xn.

We have thus shown that if the General Associative Law holds for all products
involving fewer than n elements of the group G, then it holds for all products
involving n elements of G. The validity of the General Associative Law
therefore follows by induction on the number of elements occurring in the
product in question.

Note that the only group axiom used in verifying the General Associative
Law is the Associative Law for products of three elements. It follows from
this that the General Associative Law holds for any binary operation on a
set that satisfies the Associative Law for products of three elements. (A set
with a binary operation satisfying the Associative Law is referred to as a
semigroup—the General Associative Law holds in all semigroups.)

2.6 Subgroups

Definition Let G be a group, and let H be a subset of G. We say that H
is a subgroup of G if the following conditions are satisfied:

• the identity element of G is an element of H;

• the product of any two elements of H is itself an element of H;

• the inverse of any element of H is itself an element of H.

Lemma 2.5 Let x be an element of a group G. Then the set of all elements
of G that are of the form xn for some integer n is a subgroup of G.
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Proof Let H = {xn : n ∈ Z}. Then the identity element belongs to H, since
it is equal to x0. The product of two elements of H is itself an element of
H, since xmxn = xm+n for all integers m and n (see Theorem 2.4). Also the
inverse of an element of H is itself an element of H since (xn)−1 = x−n for
all integers n. Thus H is a subgroup of G, as required.

Definition Let x be an element of a group G. The order of x is the smallest
positive integer n for which xn = e. The subgroup generated by x is the
subgroup consisting of all elements of G that are of the form xn for some
integer n.

Lemma 2.6 Let H and K be subgroups of a group G. Then H ∩K is also
a subgroup of G.

Proof The identity element of G belongs to H ∩K since it belongs to the
subgroups H and K. If x and y are elements of H ∩K then xy is an element
of H (since x and y are elements of H), and xy is an element of K, and
therefore xy is an element of H ∩K. Also the inverse x−1 of an element x of
H ∩K belongs to H and to K and thus belongs to H ∩K, as required.

More generally, the intersection of any collection of subgroups of a given
group is itself a subgroup of that group.

2.7 Cyclic Groups

Definition A group G is said to be cyclic, with generator x, if every element
of G is of the form xn for some integer n.

Example The group Z of integers under addition is a cyclic group, generated
by 1.

Example Let n be a positive integer. The set Zn of congruence classes of
integers modulo n is a cyclic group of order n with respect to the operation
of addition.

Example The group of all rotations of the plane about the origin through an
integer multiple of 2π/n radians is a cyclic group of order n for all integers n.
This group is generated by an anticlockwise rotation through an angle of
2π/n radians.

Lemma 2.7 Let G be a �nite cyclic group with generator x, and let j and
k be integers. Then xj = xk if and only if j − k is divisible by the order of
the group.
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Proof First we show that xm = e for some strictly positive integer m, where
e is the identity element of G. Now xj = xk for some integers j and k with
j < k, since G is finite. Let m = k− j. Then m > 0 and xm = xk(xj)−1 = e.

Let n be the smallest strictly positive integer for which xn = e. Now any
integer i can be expressed in the form i = qn+ r, where q and r are integers
and 0 ≤ r < n. (Thus q is the greatest integer for which qn ≤ i.) Then
xi = (xn)qxr = xr (since xn = e). Now the choice of n ensures that xr 6= e
if 0 < r < n. It follows that an integer i satisfies xi = e if and only if n
divides i.

Let j and k be integers. Now xj = xk if and only if xj−k = e, since
xj−k = xj(xk)−1. It follows that xj = xk if and only if j− k is divisible by n.
Moreover n is the order of the group G, since each element of G is equal to
one of the elements xi with 0 ≤ i < n and these elements are distinct.

We now classify all subgroups of a cyclic group G. Let x be a generator
of G. Given a subgroup H of G with more than one element, let m be the
smallest strictly positive integer for which xm ∈ H. Suppose that xi ∈ H
for some integer i. Now i can be expressed in the form i = qm + r, where q
and r are integers and 0 ≤ r < m. (Thus q is the greatest integer for which
qm ≤ i.) But then xr = xi−qm = xi(xm)−q, where xi ∈ H and xm ∈ H,
and therefore xr ∈ H. The choice of m now ensures that r = 0, and hence
i = qm. Thus xi ∈ H if and only if i is some integer multiple of m. This
shows that H is the cyclic group generated by xm, where m is the smallest
strictly positive integer for which xm ∈ H.

Let us consider the case when the cyclic group G is finite. Let s be the
order of G. Then xs = e, and hence xs belongs to the subgroup H. It
follows that s must be some integer multiple of m, where m is the smallest
strictly positive integer for which xm ∈ H. Thus the subgroups of a finite
cyclic group G with generator g are the trivial subgroup {e} and the cyclic
subgroups generated by xm for each divisor m of the order of G.

Consider now the case when the cyclic group G is infinite. For each posi-
tive integer m, the element xm generates a subgroup of G, and moreover m is
the smallest strictly positive integer for which xm belongs to that subgroup.
Thus if G is an infinite cyclic group with generator x then the subgroups of
G are the trivial subgroup {e} and the cyclic subgroups generated by xm for
each positive integer m.

We have thus classified all subgroups of a cyclic group. In particular we
see that any subgroup of a cyclic group is itself a cyclic group.
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2.8 Cosets and Lagrange’s Theorem

Definition Let H be a subgroup of a group G. A left coset of H in G is a
subset of G that is of the form xH, where x ∈ G and

xH = {y ∈ G : y = xh for some h ∈ H}.

Similarly a right coset of H in G is a subset of G that is of the form Hx,
where x ∈ G and

Hx = {y ∈ G : y = hx for some h ∈ H}.

Note that a subgroup H of a group G is itself a left coset of H in G.

Lemma 2.8 Let H be a subgroup of a group G. Then the left cosets of H
in G have the following properties:|

(i) x ∈ xH for all x ∈ G;

(ii) if x and y are elements of G, and if y = xa for some a ∈ H, then
xH = yH;

(iii) if x and y are elements of G, and if xH ∩ yH is non-empty then xH =
yH.

Proof Let x ∈ G. Then x = xe, where e is the identity element of G. But
e ∈ H. It follows that x ∈ xH. This proves (i).

Let x and y be elements of G, where y = xa for some a ∈ H. Then
yh = x(ah) and xh = y(a−1h) for all h ∈ H. Moreover ah ∈ H and a−1h ∈ H
for all h ∈ H, since H is a subgroup of G. It follows that yH ⊂ xH and
xH ⊂ yH, and hence xH = yH. This proves (ii).

Finally suppose that xH ∩ yH is non-empty for some elements x and y
of G. Let z be an element of xH ∩ yH. Then z = xa for some a ∈ H, and
z = yb for some b ∈ H. It follows from (ii) that zH = xH and zH = yH.
Therefore xH = yH. This proves (iii).

Lemma 2.9 Let H be a �nite subgroup of a group G. Then each left coset
of H in G has the same number of elements as H.

Proof Let H = {h1, h2, . . . , hm}, where h1, h2, . . . , hm are distinct, and let x
be an element of G. Then the left coset xH consists of the elements xhj for
j = 1, 2, . . . ,m. Suppose that j and k are integers between 1 and m for which
xhj = xhk. Then hj = x−1(xhj) = x−1(xhk) = hk, and thus j = k, since
h1, h2, . . . , hm are distinct. It follows that the elements xh1, xh2, . . . , xhm are
distinct. We conclude that the subgroup H and the left coset xH both have
m elements, as required.
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Theorem 2.10 (Lagrange’s Theorem) Let G be a �nite group, and let H be
a subgroup of G. Then the order of H divides the order of G.

Proof Each element of G belongs to at least one left coset of H in G, and
no element can belong to two distinct left cosets of H in G (see Lemma 2.8).
Therefore every element of G belongs to exactly one left coset of H. Moreover
each left coset of H contains |H| elements (Lemma 2.9). Therefore |G| =
n|H|, where n is the number of left cosets of H in G. The result follows.

Definition Let H be a subgroup of a group G. If the number of left cosets
of H in G is finite then the number of such cosets is referred to as the index
of H in G, denoted by [G:H].

The proof of Lagrange’s Theorem shows that the index [G:H] of a sub-
group H of a finite group G is given by [G:H] = |G|/|H|.

Corollary 2.11 Let x be an element of a �nite group G. Then the order of
x divides the order of G.

Proof Let H be the set of all elements of G that are of the form xn for some
integer n. Then H is a subgroup of G (see Lemma 2.5), and the order of
H is the order of x. But the order of H divides G by Lagrange’s Theorem
(Theorem 2.10). The result follows.

Corollary 2.12 Any �nite group of prime order is cyclic.

Proof Let G be a group of prime order, and let x be some element of G
that is not the identity element. Then the order of x is greater than one and
divides the order of G. But then the order of x must be equal to the order
of G, since the latter is a prime number. Thus G is a cyclic group generated
by x, as required.

2.9 Normal Subgroups and Quotient Groups

Let A and B be subsets of a group G. The product AB of the sets A and B
is defined by

AB = {xy : x ∈ A and y ∈ B}.

We denote {x}A and A{x} by xA and Ax, for all elements x of G and
subsets A of G. The Associative Law for multiplication of elements of G
ensures that (AB)C = A(BC) for all subsets A, B and C of G. We can
therefore use the notation ABC to denote the products (AB)C and A(BC);
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and we can use analogous notation to denote the product of four or more
subsets of G.

If A, B and C are subsets of a group G, and if A ⊂ B then clearly
AC ⊂ BC and CA ⊂ CB.

Note that if H is a subgroup of the group G and if x is an element of G
then xH is the left coset of H in G that contains the element x. Similarly
Hx is the right coset of H in G that contains the element x.

If H is a subgroup of G then HH = H. Indeed HH ⊂ H, since the
product of two elements of a subgroup H is itself an element of H. Also
H ⊂ HH since h = eh for any element h of H, where e, the identity element
of G, belongs to H.

Definition A subgroup N of a group G is said to be a normal subgroup of
G if xnx−1 ∈ N for all n ∈ N and x ∈ G.

The notation ‘N / G’ signifies ‘N is a normal subgroup of G’.

Definition A group G is said to be simple if the only normal subgroups of
G are the whole of G and the trivial subgroup {e} whose only element is the
identity element e of G.

Lemma 2.13 Every subgroup of an Abelian group is a normal subgroup.

Proof Let N be a subgroup of an Abelian group G. Then

xnx−1 = (xn)x−1 = (nx)x−1 = n(xx−1) = ne = n

for all n ∈ N and x ∈ G, where e is the identity element of G. The result
follows.

Example Let S3 be the group of permutations of the set {1, 2, 3}, and let
H be the subgroup of S3 consisting of the identity permutation and the
transposition (1 2). Then H is not normal in G, since (2 3)−1(1 2)(2 3) =
(2 3)(1 2)(2 3) = (1 3) and (1 3) does not belong to the subgroup H.

Proposition 2.14 A subgroup N of a group G is a normal subgroup of G if
and only if xNx−1 = N for all elements x of G.

Proof Suppose that N is a normal subgroup of G. Let x be an element
of G. Then xNx−1 ⊂ N . (This follows directly from the definition of a
normal subgroup.) On replacing x by x−1 we see also that x−1Nx ⊂ N , and
thus N = x(x−1Nx)x−1 ⊂ xNx−1. Thus each of the sets N and xNx−1 is
contained in the other, and therefore xNx−1 = N .

Conversely if N is a subgroup of G with the property that xNx−1 = N
for all x ∈ G, then it follows immediately from the definition of a normal
subgroup that N is a normal subgroup of G.
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Corollary 2.15 A subgroup N of a group G is a normal subgroup of G if
and only if xN = Nx for all elements x of G.

Proof Let N be a subgroup of G, and let x be an element of G. If xNx−1 =
N then xN = (xNx−1)x = Nx. Conversely if xN = Nx then xNx−1 =
Nxx−1 = Ne = N , where e is the identity element of G. Thus xN = Nx if
and only if xNx−1 = N . It follows from Proposition 2.14 that a subgroup N
of G is normal if and only if xN = Nx for all elements x of G, as required.

Let N be a normal subgroup of G. Corollary 2.15 shows that a subset of
G is a left coset of N in G if and only if it is a right coset of N in G. We
may therefore refer to the left and right cosets of a normal subgroup N as
cosets of N in G (since it is not in this case necessary to distinguish between
left and right cosets).

Lemma 2.16 Let N be a normal subgroup of a group G and let x and y be
elements of G. Then (xN)(yN) = (xy)N .

Proof If N is a normal subgroup of G then Ny = yN , and therefore
(xN)(yN) = x(Ny)N = x(yN)N = (xy)(NN). But NN = N , since N
is a subgroup of G. Therefore (xN)(yN) = (xy)N , as required.

Proposition 2.17 Let G be a group, and let N be a normal subgroup of
G. Then the set of all cosets of N in G is a group under the operation of
multiplication. The identity element of this group is N itself, and the inverse
of a coset xN is the coset x−1N for any element x of G.

Proof Let x, y and z be any elements of G. Then the product of the cosets
xN and yN is the coset (xy)N . The subgroup N is itself a coset of N in G,
since N = eN . Moreover

(xN)N = (xN)(eN) = (xe)N = xN,

N(xN) = (eN)(xN) = (ex)N = xN,

(xN)(x−1N) = (xx−1)N = N,

(x−1N)(xN) = (x−1x)N = N.

for all elements x of G. Thus the group axioms are satisfied.

Definition Let N be a normal subgroup of a group G. The quotient group
G/N is defined to be the group of cosets of N in G under the operation of
multiplication.
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Example Consider the dihedral group D8 of order 8, which we represent as
the group of symmetries of a square in the plane with corners at the points
whose Cartesian co-ordinates are (1, 1), (−1, 1), (−1,−1) and (1,−1). Then

D8 = {I,R,R2,R3,T1,T2,T3,T4},

where I denotes the identity transformation, R denotes an anticlockwise
rotation about the origin through a right angle, and T1, T2, T3 and T4 denote
the reflections in the lines y = 0, x = y, x = 0 and x = −y respectively. Let
N = {I,R2}. Then N is a subgroup of D8. The left cosets of N in D8 are
N , A, B and C, where

A = {R,R3}, B = {T1,T3}, C = {T2,T4}.

Moreover N , A, B and C are also the right cosets of N in D8, and thus N is
a normal subgroup of D8. On multiplying the cosets A, B and C with one
another we find that AB = BA = C, AC = CA = B and BC = CB = A.
Therefore the quotient group D8/N is a group of order 4 with Cayley table

N A B C

N N A B C
A A N C B
B B C N A
C C B A N .

This is the Cayley table of the Klein 4-group V4.

There is an alternative approach to the construction of quotient groups
which utilises the basic properties of equivalence relations. Let G be a group,
and let H be a subgroup of G. Define a relation ∼H on G, where elements
x and y of G satisfy x ∼H y if and only if there exists some element h of
H satisfying x = yh. Now x = xe, where e, the identity element of G, is
an element of H. It follows that x ∼H x for all elements x of G. Thus the
relation ∼H is reflexive. If elements x and y of G satisfy x ∼H y then they
also satisfy y ∼H x, for if x = yh, where h is an element of H, then y = xh−1.
Thus the relation ∼H is symmetric. If x, y and z are elements of G satisfying
x ∼H y and y ∼H z then x ∼H z, for if x = yh and y = zk, where h and k
belong to H, then x = zkh, and kh belongs to H. Thus the relation ∼H is
transitive. We conclude that the relation ∼H is an equivalence relation. One
can readily verify that its equivalence classes are the left cosets of H in G.

Now suppose that the subgroup H is normal in G. Let x, y, u and v be
elements of G, where x ∼H u and y ∼H v. Then there exist elements h and
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k of H such that x = uh and y = vk. Then xy = uhvk = uv(v−1hvk). Now
v−1hv ∈ H since h ∈ H and H is normal in G. It follows that v−1hvk ∈
H, since the product of any two elements of a subgroup belongs to that
subgroup. We deduce that if x ∼H u and y ∼H v then xy ∼H uv. Also
x−1 = (uh)−1 = h−1u−1 = u−1(uh−1u−1, where uh−1u−1 ∈ H. It follows that
if x ∼H u then x−1 ∼H u−1.

Now, for any x ∈ G, let Cx denote the coset of H to which the element x
belongs. Now Cx is the equivalence class of x with respect to the equivalence
relation ∼H . It follows from this that elements x and u satisfy Cx = Cu if
and only if x ∼H u. We conclude that if H is normal in G, and if Cx = Cu
and Cy = Cv then Cxy = Cuv and Cx−1 = Cu−1 . One can deduce from this
that there is a well-defined group multiplication operation on cosets of H in
G, where CxCy is defined to be Cxy. The results just prove show that this
definition of CxCy does not depend on the choice of x and y representing their
respective cosets. The identity element is the subgroup H itself, which can
be viewed as the coset containing the identity element, and the inverse of the
coset Cx is the coset Cx−1 . One can readily verify that all the group axioms
are satisfied and thus the set of cosets of H in G does indeed constitute a
group, the quotient group G/H.

2.10 Homomorphisms

Definition A homomorphism θ:G→ K from a group G to a group K is a
function with the property that θ(g1 ∗ g2) = θ(g1) ∗ θ(g2) for all g1, g2 ∈ G,
where ∗ denotes the group operation on G and on K.

Example Let q be an integer. The function from the group Z of integers to
itself that sends each integer n to qn is a homomorphism.

Example Let x be an element of a group G. The function that sends each
integer n to the element xn is a homomorphism from the group Z of integers
to G, since xm+n = xmxn for all integers m and n (Theorem 2.4).

Lemma 2.18 Let θ:G→ K be a homomorphism. Then θ(eG) = eK, where
eG and eK denote the identity elements of the groups G and K. Also θ(x−1) =
θ(x)−1 for all elements x of G.

Proof Let z = θ(eG). Then z2 = θ(eG)θ(eG) = θ(eGeG) = θ(eG) = z. The
result that θ(eG) = eK now follows from the fact that an element z of K
satisfies z2 = z if and only if z is the identity element of K.

Let x be an element of G. The element θ(x−1) satisfies θ(x)θ(x−1) =
θ(xx−1) = θ(eG) = eK , and similarly θ(x−1)θ(x) = eK . The uniqueness of
the inverse of θ(x) now ensures that θ(x−1) = θ(x)−1.
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An isomorphism θ:G → K between groups G and K is a homomor-
phism that is also a bijection mapping G onto K. Two groups G and K are
isomorphic if there exists an isomorphism mapping G onto K.

Example Let D6 be the group of symmetries of an equilateral triangle in
the plane with vertices A, B and C, and let S3 be the group of permutations
of the set {A,B,C}. The function which sends a symmetry of the triangle
to the corresponding permutation of its vertices is an isomorphism between
the dihedral group D6 of order 6 and the symmetric group S3.

Example Let R be the group of real numbers with the operation of addition,
and let R+ be the group of strictly positive real numbers with the operation
of multiplication. The function exp:R→ R

+ that sends each real number x
to the positive real number ex is an isomorphism: it is both a homomorphism
of groups and a bijection. The inverse of this isomorphism is the function
log:R+ → R that sends each strictly positive real number to its natural
logarithm.

Here is some further terminology regarding homomorphisms:

• A monomorphism is an injective homomorphism.

• An epimorphism is a surjective homomorphism.

• An endomorphism is a homomorphism mapping a group into itself.

• An automorphism is an isomorphism mapping a group onto itself.

Definition The kernel ker θ of the homomorphism θ:G → K is the set of
all elements of G that are mapped by θ onto the identity element of K.

Example Let the group operation on the set {+1,−1} be multiplication,
and let θ:Z → {+1,−1} be the homomorphism that sends each integer n
to (−1)n. Then the kernel of the homomorphism θ is the subgroup of Z
consisting of all even numbers.

Lemma 2.19 Let G and K be groups, and let θ:G→ K be a homomorphism
from G to K. Then the kernel ker θ of θ is a normal subgroup of G.

Proof Let x and y be elements of ker θ. Then θ(x) = eK and θ(y) = eK ,
where eK denotes the identity element of K. But then θ(xy) = θ(x)θ(y) =
eKeK = eK , and thus xy belongs to ker θ. Also θ(x−1) = θ(x)−1 = e−1

K = eK ,
and thus x−1 belongs to ker θ. We conclude that ker θ is a subgroup of K.
Moreover ker θ is a normal subgroup of G, for if g ∈ G and x ∈ ker θ then

θ(gxg−1) = θ(g)θ(x)θ(g)−1 = θ(g)θ(g−1) = eK .
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If N is a normal subgroup of some group G then N is the kernel of the
quotient homomorphism θ:G → G/N that sends g ∈ G to the coset gN . It
follows therefore that a subset of a group G is a normal subgroup of G if and
only if it is the kernel of some homomorphism.

Proposition 2.20 Let G and K be groups, let θ:G → K be a homomor-
phism from G to K, and let N be a normal subgroup of G. Suppose that
N ⊂ ker θ. Then the homomorphism θ:G → K induces a homomorphism
θ̂:G/N → K sending gN ∈ G/N to θ(g). Moreover θ̂:G/N → K is injective
if and only if N = ker θ.

Proof Let x and y be elements of G. Now xN = yN if and only if x−1y ∈ N .
Also θ(x) = θ(y) if and only if x−1y ∈ ker θ. Thus if N ⊂ ker θ then θ(x) =
θ(y) whenever xN = yN , and thus θ:G→ K induces a well-defined function
θ̂:G/N → K sending xN ∈ G/N to θ(x). This function is a homomorphism,
since θ̂((xN)(yN)) = θ̂(xyN) = θ(xy) = θ(x)θ(y) = θ̂(xN)θ̂(yN).

Suppose now that N = ker θ. Then θ(x) = θ(y) if and only if xN = yN .
Thus the homomorphism θ̂:G/N → K is injective. Conversely if θ̂:G/N →
K is injective then N must be the kernel of θ, as required.

Corollary 2.21 Let G and K be groups, and let θ:G → K be a homomor-
phism. Then θ(G) ∼= G/ ker θ.

2.11 The Isomorphism Theorems

Lemma 2.22 Let G be a group, let H be a subgroup of G, and let N be a
normal subgroup of G. Then the set HN is a subgroup of G, where HN =
{hn : h ∈ H and n ∈ N}.

Proof The set HN clearly contains the identity element of G. Let x and y
be elements of HN . We must show that xy and x−1 belong to HN . Now
x = hu and y = kv for some elements h and k of H and for some elements u
and v of N . Then xy = (hk)(k−1ukv). But k−1uk ∈ N , since N is normal.
It follows that k−1ukv ∈ N , since N is a subgroup and k−1ukv is the product
of the elements k−1uk and v of N . Also hk ∈ H. It follows that xy ∈ HN .

We must also show that x−1 ∈ HN . Now x−1 = u−1h−1 = h−1(hu−1h−1).
Also h−1 ∈ H, since H is a subgroup of G, and hu−1h−1 ∈ N , since N
is a normal subgroup of G. It follows that x−1 ∈ HN , and thus HN is a
subgroup of G, as required.
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Theorem 2.23 (First Isomorphism Theorem) Let G be a group, let H be a
subgroup of G, and let N be a normal subgroup of G. Then

HN

N
∼=

H

N ∩H
.

Proof Every element of HN/N is a coset of N that is of the form hN for
some h ∈ H. Thus if ϕ(h) = hN for all h ∈ H then ϕ:H → HN/N is
a surjective homomorphism, and kerϕ = N ∩ H. But ϕ(H) ∼= H/ kerϕ
(Corollary 2.21). Therefore HN/N ∼= H/(N ∩H) as required.

Theorem 2.24 (Second Isomorphism Theorem) Let M and N be normal
subgroups of a group G, where M ⊂ N . Then

G

N
∼=
G/M

N/M
.

Proof There is a well-defined homomorphism θ:G/M → G/N that sends
gM to gN for all g ∈ G. Moreover the homomorphism θ is surjective, and
ker θ = N/M . But θ(G/M) ∼= (G/M)/ ker θ (Corollary 2.21). Therefore
G/N is isomorphic to (G/M) / (N/M), as required.

2.12 Direct products of groups

Let G1, G2, . . . , Gn be groups, and let G be the Cartesian product G1×G2×
· · · ×Gn of G1, G2, . . . , Gn (when the latter are regarded as sets). Then the
elements of G are n-tuples (x1, x2, . . . , xn) where xi ∈ Gi for i = 1, 2, . . . , n.
We can multiply two elements of G as follows:

(x1, x2, . . . , xn)(y1, y2, . . . , yn) = (x1y1, x2y2, . . . , xnyn).

One can readily verify that G is a group with respect to this binary op-
eration: multiplication is associative; the identity element of the group is
(e1, e2, . . . , en), where ei is the identity element of Gi for each i; and the in-
verse of an element (x1, x2, . . . , xn) of G is (x−1

1 , x−1
2 , . . . , x−1

n ). We say that
the group G is the direct product of the groups G1, G2, . . . , Gn: this direct
product is (not surprisingly) denoted by G1 ×G2 × · · · ×Gn.

Example Let C2 and C3 be cyclic groups of orders 2 and 3 respectively.
Then C2 × C3 is a cyclic group of order 6, and C2 × C2 is isomorphic to the
Klein 4-group whose Cayley table is

I A B C

I I A B C
A A I C B
B B C I A
C C B A I .
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Let us first consider C2 × C3. Let x and y be generators of C2 and C3

respectively, and let e and e′ denote the identity elements of C2 and C3. Thus
C2 = {e, x} and C3 = {e′, y, y2}, where x2 = e and y3 = e′. The elements of
C2 × C3 are

(e, e′), (e, y), (e, y2), (x, e′), (x, y), (x, y2).

Let z = (x, y). On computing the powers of z we find that

z2 = (e, y2), z3 = (x, e′), z4 = (e, y), z5 = (x, y2), z6 = (e, e′).

Thus 6 is the smallest positive integer n for which zn is equal to the identity
element (e, e′) of the group. We deduce that the group C2 × C3 (which is a
group of order 6) must be a cyclic group generated by the element z.

Next consider C2 × C2. This has four elements I, A, B and C, where
I = (e, e), A = (e, x), B = (x, e) and C = (x, x). If we calculate the Cayley
table for the group, we discover that it is that of the Klein 4-group.

2.13 Cayley’s Theorem

Theorem 2.25 (Cayley’s Theorem) Let G be a group of order n. Then G
is isomorphic to a subgroup of the group Sn of permutations of a set of n
elements.

Proof For each element x of G, let σx:G→ G be the function defined such
that σx(g) = xg for all g ∈ G. Now

σx−1(σx(g)) = x−1(xg) = (x−1x)g = g

and
σx(σx−1(g)) = x(x−1g) = (x(x−1)g = g

for all g ∈ G. It follows that, for any x ∈ G, the function σx:G → G is a
bijection whose inverse is σx−1 It follows that σx is a permutation of G for all
x ∈ G, and thus the function sending an element x of G to the permutation
σx is a function from G to the group of permutations of G. This function
is a homomorphism. Indeed σxy = σx ◦ σy since σxy(g) = (xy)g = x(yg) =
σx(σy(g)) for all g ∈ G. The homomorphism sending x ∈ G to σx is be
injective, for if σx is the identity permutation then xg = g for all g ∈ G, and
hence x is the identity element of G. It follows that G is isomorphic to the
image of the homomorphism. This image is a subgroup {σx : x ∈ G} of the
group of permutations of G. The result follows.
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2.14 Group Actions, Orbits and Stabilizers

Definition A left action of a group G on a set X associates to each g ∈ G
and x ∈ X an element g.x of X in such a way that g.(h.x) = (gh).x and
1.x = x for all g, h ∈ G and x ∈ X, where 1 denotes the identity element of
G.

Given a left action of a group G on a set X, the orbit of an element x of
X is the subset {g.x : g ∈ G} of X, and the stabilizer of x is the subgroup
{g ∈ G : g.x = x} of G.

Lemma 2.26 Let G be a �nite group which acts on a set X on the left.
Then the orbit of an element x of X contains [G:H] elements, where [G:H]
is the index of the stabilizer H of x in G.

Proof There is a well-defined function θ:G/H → X defined on the set G/H
of left cosets of H in G which sends gH to g.x for all g ∈ G. Moreover this
function is injective, and its image is the orbit of x. The result follows.

2.15 Conjugacy

Definition Two elements h and k of a group G are said to be conjugate if
k = ghg−1 for some g ∈ G.

One can readily verify that the relation of conjugacy is reflexive, sym-
metric and transitive and is thus an equivalence relation on a group G. The
equivalence classes determined by this relation are referred to as the conju-
gacy classes of G. A group G is the disjoint union of its conjugacy classes.
Moreover the conjugacy class of the identity element of G contains no other
element of G.

A group G is Abelian if and only if all its conjugacy classes contain exactly
one element of the group G.

Definition Let G be a group. The centralizer C(h) of an element h of G is
the subgroup of G defined by C(h) = {g ∈ G : gh = hg}.

Lemma 2.27 Let G be a �nite group, and let h ∈ G. Then the number of
elements in the conjugacy class of h is equal to the index [G:C(h)] of the
centralizer C(h) of h in G.

Proof There is a well-defined function f :G/C(h) → G, defined on the set
G/C(h) of left cosets of C(h) in G, which sends the coset gC(h) to ghg−1 for
all g ∈ G. This function is injective, and its image is the conjugacy class of
h. The result follows.
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Let H be a subgroup of a group G. One can easily verify that gHg−1 is
also a subgroup of G for all g ∈ G, where gHg−1 = {ghg−1 : h ∈ H}.

Definition Two subgroups H and K of a group G are said to be conjugate
if K = gHg−1 for some g ∈ G.

The relation of conjugacy is an equivalence relation on the collection of
subgroups of a given group G.

2.16 Permutations and the Symmetric Groups

A permutation of a set S is a bijective function p:S → S from S to itself.
The identity permutation of a set S is the permutation that fixes every

element of S.
Permutations of a finite set S are conveniently represented in a two row

form (
x1 x2 . . . xn
p(x1) p(x2) . . . p(xn)

)
,

where x1, x2, . . . , xn are the elements of the set S and p(x1), p(x2), . . . , p(xn)
are the images of these elements under the permutation p being represented.
Thus for example (

1 2 3
2 3 1

)
represents the permutation of the set {1, 2, 3} that sends 1 to 2, sends 2 to
3, and sends 3 to 1.

Example There are two permutations of a set {a, b} with two elements.

These are the identity permutation

(
a b
a b

)
and the transposition

(
a b
b a

)
that interchanges the elements a and b.

Example There are six permutations of a set {a, b, c} with three elements.
These are (

a b c
a b c

)
,

(
a b c
a c b

)
,

(
a b c
b a c

)
,(

a b c
b c a

)
,

(
a b c
c a b

)
,

(
a b c
c b a

)
.

Let S be a set. Then the composition of any two permutations of S is itself
a permutation of S (since the composition of two bijections is a bijection).
Also any permutation p of S has a well-defined inverse p−1. (This follows
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from the fact that the inverse of a bijection is itself a bijection.) Composition
of permutations is associative: (p◦ q)◦ r = p◦ (q ◦ r) for all permutations p, q
and r of S. (This can be verified by noting that ((p◦q)◦r)(x) = p(q(r(x))) =
(p ◦ (q ◦ r))(x) for all elements x of S.) It follows from this that the set of all
permutations of a set S is a group, where the group operation is composition
of permutations.

Definition For each natural number n, the symmetric group Σn is the group
of permutations of the set {1, 2, . . . , n}.

Let S be a set, and let a1, a2, . . . , an be distinct elements of S. We
denote by (a1 a2 · · · an) the permutation of S that sends ai to ai+1 for
i = 1, 2, . . . , n− 1, sends an to a1, and fixes all other elements of S. Such a
permutation is called a cycle of order n, or n-cycle. A cycle of length 2 is
also called a transposition.

(Note that evaluating a composition of cycles, we shall compose them
from right to left, in accordance with standard practice when composing
functions.)

Example There are 24 permutations of a set {a, b, c, d} with exactly four
elements. These are the following: the identity permutation that fixes every
element of the set; the six transpositions (a b), (a c), (a d), (b c), (b d) and
(c d); the eight 3-cycles (b c d), (b d c), (a c d), (a d c), (a b d), (a d b), (a b c)
and (a c b); the six 4-cycles (a b c d), (a b d c), (a c b d), (a c d b), (a d b c) and
(a d c b); and three further permutations (a b)(c d), (a c)(b d) and (a d)(b c).

Two cycles (a1 a2 · · · am) and (b1 b2 · · · bn) are said to be disjoint when
the elements a1, a2, . . . , am and b1, b2, . . . , bn are distinct (i.e., no pair of these
elements coincide).

It is easy to see that if (a1 a2 · · · am) and (b1 b2 · · · bn) are disjoint cycles
then

(a1 a2 · · · am)(b1 b2 · · · bn) = (b1 b2 · · · bn)(a1 a2 · · · am).

Proposition 2.28 Any permutation of a �nite set S is the identity permu-
tation, a cycle, or a composition of two or more disjoint cycles.

Proof We prove the result by induction on the number of elements in the
set S. The result is trivially true if S has only one element, since in this
case the only permutation of S is the identity permutation. Suppose that
the result is known to be true for all permutations of sets with fewer than k
elements. We show that the result then holds for all permutations of sets
with k elements.
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Let S be a set with k elements and let p be a permutation of S. Choose
an element a1 of S, and let elements a2, a3, a4, . . . of S be defined by the
requirement that p(ai) = ai+1 for all positive integers i. Let n be the largest
positive integer for which the elements a1, a2, . . . , an of S are distinct. We
claim that p(an) = a1.

Now the choice of n ensures that the elements a1, a2, . . . , an, an+1 are not
distinct. Therefore an+1 = aj for some positive integer j between 1 and n.
If j were greater than one then we would have aj = p(aj−1) and aj = p(an),
which is impossible since if p is a permutation of S then exactly one element
of S must be sent to aj by p. Therefore j = 1, and thus p(an) = a1. Let
σ1 = (a1 a2 · · · an).

Let T be the set S \ {a1, a2, . . . , an} consisting of all elements of S other
than a1, a2, . . . , an. Now a1 = p(an), and ai = p(ai−1) for i = 2, 3, . . . , n.
Thus if x ∈ T then p(x) 6= ai for i = 1, 2, . . . , n (since the function p:S → S
is injective), and therefore p(x) ∈ T . We can therefore define a function
q:T → T , where q(x) = p(x) for all x ∈ T . This function has a well-
defined inverse q−1:T → T where q−1(x) = p−1(x) for all x ∈ T . It follows
that q:T → T is a permutation of T . The induction hypothesis ensures
that this permutation is the identity permutation of T , or is a cycle, or can
be expressed as a composition of two or more disjoint cyles. These cycles
extend to permutations of S that fix the elements a1, a2, . . . , an, and these
permutations of S are also cycles. It follows that either p = σ1 (and q is the
identity permutation of T ), or else p = σ1σ2 . . . σm, where σ2, σ3, . . . , σm are
disjoint cycles of S that fix a1, a2, . . . , an and correspond to cycles of T . Thus
if the result holds for permutations of sets with fewer than k elements, then
it holds for permutations of sets with k elements. It follows by induction on
k that the result holds for permutations of finite sets.

Recall that a transposition is a permutation (a b) of a set S that inter-
changes two elements a and b of S and fixes the remaining elements.

Lemma 2.29 Every permutation of a �nite set with more than one element
can be expressed as a �nite composition of transpositions.

Proof Each cycle can be expressed as a composition of transpositions. In-
deed if a1, a2, . . . , an are distinct elements of a finite set S then

(a1 a2 · · · an) = (a1 a2)(a2 a3) · · · (an−1 an).

It follows from Proposition 2.28 that a permutation of S that is not the iden-
tity permutation can be expressed as a finite composition of transpositions.
Moreover the identity permutation of S can be expressed as the composition
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of any transposition with itself, provided that S has more than one element.
The result follows.

Theorem 2.30 A permutation of a �nite set cannot be expressed in one way
as a composition of an odd number of transpositions and in another way as
a composition of an even number of transpositions.

Proof We can identify the finite set with the set {1, 2, . . . , n}, where n is the
number of elements in the finite set. Let F :Zn → Z be the function sending
each n-tuple (m1,m2, . . . ,mn) of integers to the product

∏
1≤j<k≤n

(mk−mj) of

the quantities mk −mj for all pairs (j, k) of integers satisfying 1 ≤ j < k ≤
n. Note that F (m1,m2, . . . ,mn) 6= 0 whenever the integers m1,m2, . . . ,mn

are distinct. If we transpose two of the integers m1,m2, . . . ,mn then this
changes the sign of the function F , since the number of factors of the product∏
1≤j<k≤n

(mk −mj) that change sign is odd. (Indeed if we transpose ms and

mt, where 1 ≤ s < t < n then the factor mt −ms changes sign, the factor
mt −mi becomes −(mi −ms) and the factor mi −ms becomes −(mt −mi)
for each integer i for which s < i < t.) But any permutation σ of the
set {1, 2, . . . , n} is a composition of transpositions. It follows that to each
permutation σ of {1, 2, . . . , n} there corresponds a number ε�, where ε� = +1
or −1, such that F (m�(1),m�(2), . . . ,m�(n)) = ε�F (m1,m2, . . . ,mn) for all
integers m1,m2, . . . ,mn. Moreover ε�� = ε�ε� for all permutations σ and τ
of the set {1, 2, . . . , n}. Also ε� = −1 if the permutation τ is a transposition.
It follows that if σ is expressible as a composition of r transpositions then
ε� = (−1)r. If σ is also expressible as a composition of s transpositions then
ε� = (−1)s, and hence (−1)r = (−1)s. But then r − s must be divisible by
2. The result follows.

A permutation of a finite set is said to be even if it is expressible as the
composition of an even number of transpositions. A permutation of a finite
set is said to be odd if it is expressible as the composition of an odd number
of transpositions.

Any permutation of a finite set is expressible as a composition of trans-
positions (Lemma 2.29) and must therefore be either even or odd. However
Theorem 2.30 ensures that a permutation of a finite set cannot be both even
and odd.

Lemma 2.31 An n-cycle is even if n is odd, and is odd if n is even.

Proof An n-cycle (a1, a2, . . . , an) is expressible as a composition of n − 1
transpositions, since

(a1 a2 · · · an) = (a1 a2)(a2 a3) · · · (an−1 an).
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Thus an n-cycle is even if n− 1 is even, and is odd if n− 1 is odd.

Example Let us classify the permutations of a set {a, b, c, d} of 4 elements
into even and odd permutations. The identity permutation is even. The
six transpositions are all odd. The eight 3-cycles are all even. The six 4-
cycles are all odd. The three remaining permutations (a b)(c d), (a c)(b d)
and (a d)(b c) are all even. Note that there are 12 even permutations and 12
odd permutations of a set with 4 elements.

2.17 The Alternating Groups

A permutation of a finite set X is said to be even if it is the product of an
even number of transpositions; it is said to be odd if it is the product of an
odd number of transpositions. Note that the inverse of an even transposition
and all products of even transpositions are themselves even transpositions.

Definition For each integer n satisfying n > 1, the alternating group An is
the subgroup of the symmetric group Σn consisting of all even permutations
of the set {1, 2, . . . , n}.

Note that, for each integer n satisfying n > 1, the alternating group An
is a normal subgroup of Σn of index 2.

Example The alternating group A3 consists of the identity permutation and
the cycles (1 2 3) and (1 3 2), and is thus isomorphic to the cyclic group C3

of order 3.

Lemma 2.32 Every even permutation of a �nite set can be expressed as a
product of cycles of order 3.

Proof Let X be a finite set. Then (a b)(b c) = (a b c) and (a b)(c d) =
(c a d)(a b c) for all distinct elements a, b, c and d of X. Therefore the product
of any two transpositions can be expressed as a product of cycles of order 3.
The result thus follows from the fact that an even permutation is the product
of an even number of transpositions.

Lemma 2.33 All cycles of order k in the alternating group An are conjugate
to one another, provided that k ≤ n− 2.

Proof Let (m1m2 · · · mk) be a cycle of order k in An. Then there exists
a permutation ρ of {1, 2, . . . , n} with the property that ρ(i) = mi for i =
1, 2, . . . , k. If k ≤ n − 2 then any odd permutation with this property can
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be composed with the transposition that interchanges n− 1 and n to obtain
an even permutation ρ with the required property. Then (m1m2 · · · mk) =
ρ(1 2 · · · k)ρ−1. Thus if k ≤ n−2 then all cycles of order k in An are conjugate
to (1 2 · · · k) and are therefore conjugate to one another, as required.

Example We find all normal subgroups of the alternating group A4. Let

V4 = {ι, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)},

where ι is the identity permutation. If ρ is an even permutation sending i
to mi for i = 1, 2, 3, 4 then ρ(1 2)(3 4)ρ−1 = (m1m2)(m3m4). Therefore the
permutations (1 2)(3 4), (1 3)(2 4) and (1 4)(2 3) are conjugate to one another,
and hence V4 is a normal subgroup of A4 of order 4. The group V4 is referred
to as the Klein Viergruppe. It is isomorphic to the direct product C2×C2 of
two cyclic groups of order 2.

Let N be a normal subgroup of A4 that contains a cycle (m1 m2m3)
of order 3. Now ρ(m1 m2 m3)ρ−1 = (ρ(m1) ρ(m2) ρ(m3)) for all ρ ∈ A4.
Therefore any cycle in A4 of order 3 is conjugate to either (m1m2m3) or
to (m1 m3m2). But (m1m3m2) ∈ N , since (m1 m3 m2) = (m1m2 m3)2.
Therefore every cycle of order 3 in A4 belongs to the normal subgroup N .
But then N = A4, since A4 is generated by cycles of order 3 (Lemma 2.32).
We have thus shown that if a normal subgroup N of A4 contains a cycle of
order 3 then N = A4.

Now let N be a normal subgroup of A4 that does not contain any cycle
of order 3. Then N ⊂ V4, since all elements of A4 \ V4 are cycles of order 3.
But the only normal subgroups of A4 that are contained in V4 are {ι} and
V4 itself, since the three elements of V4 \ {ι} are conjugate to one another.

We conclude that the normal subgroups of A4 are the trivial group {ι},
the Klein Viergruppe V4 and A4 itself.

We recall that a group G is simple if and only if the only normal subgroups
of G are G itself and the trivial subgroup whose only element is the identity
element of G. The alternating group A4 is not simple. We shall prove that
An is simple when n ≥ 5.

Lemma 2.34 Let N be a non-trivial normal subgroup of the alternating
group An, where n ≥ 5. Then there exists σ ∈ N , where σ is not the identity
permutation, and a ∈ {1, 2, . . . , n} such that σ(a) = a.

Proof Let X = {1, 2, . . . , n}. The proof divides into two cases, depending
on whether or not the normal subgroup N contains a permutation ρ of X
with the property that ρ2 is not the identity permutation.
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Suppose that the normal subgroup N contains a permutation ρ of X with
the property that ρ2 is not the identity permutation. Then there exists a ∈ X
such that ρ(ρ(a)) 6= a. Let b = ρ(a) and c = ρ(b). Then the elements a, b
and c are distinct. Choose elements d and e of X such that a, b, c, d and e
are distinct. (This is possible since the set X has n elements, where n ≥ 5.)
Let ρ′ = (c d e)ρ(c d e)−1. Then ρ′ ∈ N (since ρ ∈ N and N is a normal
subgroup), ρ′(a) = b and ρ′(b) = d. Now ρ′ 6= ρ, since ρ′(b) 6= ρ(b). Thus if
σ = ρ−1ρ′ then σ ∈ N , σ(a) = a, and σ is not the identity permutation.

It remains to prove the result in the case where ρ2 is the identity permu-
tation for all ρ ∈ N . In this case choose ρ ∈ N , where ρ is not the identity
permutation, let a be an element of X for which ρ(a) 6= a, and let b = ρ(a).
The permutation ρ is even (since it belongs to the alternating group An), and
therefore ρ cannot be the transposition (a b). It follows that there exists an
element c, distinct from a and b, such that ρ(c) 6= c. Let d = ρ(c). Then the
elements a, b, c and d of X are distinct. Choose an element e of X which is
distinct from a, b, c and d. (This is possible since the set X has n elements,
where n ≥ 5.) Let ρ′ = (c d e)ρ(c d e)−1. Then ρ′(a) = b and ρ′(d) = e. Now
ρ′ 6= ρ, since ρ′(d) 6= ρ(d). Thus if σ = ρ−1ρ′ then σ ∈ N , σ(a) = a, and σ is
not the identity permutation.

Lemma 2.35 Let N be a normal subgroup of An, where n ≥ 5. If N contains
a 3-cycle then N = An.

Proof Suppose that N contains a 3-cycle. Then N contains every 3-cycle
of An, since all 3-cycles in An are conjugate (Lemma 2.33). But then N
contains every even permutation, since every even permutation is the identity
permutation, a 3-cycle or a finite product of 3-cycles (Lemma 2.32). Thus
N = An.

Theorem 2.36 The alternating group An is simple when n ≥ 5.

Proof First we prove that A5 is simple. Let N be a non-trivial normal
subgroup of A5. We shall show that N ∩H is non-trivial, where H = {ρ ∈
A5 : ρ(5) = 5}. Then H is a subgroup of A5 that is isomorphic to A4.

It follows from Lemma 2.34 that there exists σ ∈ N , where σ is not the
identity permutation, and a ∈ {1, 2, 3, 4, 5} such that σ(a) = a. Choose
ρ ∈ A5 such that ρ(a) = 5, and let σ′ = ρσρ−1. Then σ′ ∈ N and σ′(5) = 5,
and therefore σ′ ∈ H ∩ N . But σ′ is not the identity permutation. Thus
H ∩N is a non-trivial normal subgroup of H. But the subgroup H of A5 is
isomorphic to A4 (since each permutation of {1, 2, 3, 4} can be regarded as
a permutation of {1, 2, 3, 4, 5} that fixes 5). It follows from this that H ∩N
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must contain the permutations (1 2)(3 4), (1 3)(2 4) and (1 4)(2 3) since the
two non-trivial normal subgroups of A4 each contain these permutations. But
then the normal subgroup N of A5 contains also the permutation (1 2)(4 5),
since (1 2)(4 5) = (3 4 5)(1 2)(3 4)(3 4 5)−1. It follows that N contains the
cycle (3 4 5), since (3 4 5) = (1 2)(3 4)(1 2)(4 5). It follows from Lemma 2.35
that N = A5. Thus the group A5 is simple.

We now prove that An is simple for n > 5 by induction on n. Thus
suppose that n > 5 and the group An−1 is simple. Let N be a non-trivial
normal subgroup of An, and let H = {ρ ∈ An : ρ(n) = n}. It follows from
Lemma 2.34 that there exists σ ∈ N , where σ is not the identity permutation,
and a ∈ {1, 2, . . . , n} such that σ(a) = a. Choose ρ ∈ An such that ρ(a) = n,
and let σ′ = ρσρ−1. Then σ′ ∈ N and σ′(n) = n, and therefore σ′ ∈ H ∩N .
But σ′ is not the identity permutation. Thus H ∩N is a non-trivial normal
subgroup of H. But the subgroup H of An is simple, since it is isomorphic to
An−1. It follows that N ∩H = H, and thus H ⊂ N . But then N contains a
3-cycle, and therefore N = An (Lemma 2.35). Thus the group An is simple.
We conclude by induction on n that the group An is simple whenever n ≥ 5,
as required.

2.18 Normal Subgroups of the Symmetric Groups

We can now find all normal subgroups of the symmetric groups Σn. If N is
a normal subgroup of Σn then N ∩An is a normal subgroup of An. Moreover
it follows from the First Isomorphism Theorem (Theorem 2.23) that N/(N ∩
An) ∼= NAn/An. But NAn/An is a subgroup of Σn/An, and |Σn/An| = 2.
Therefore either N ⊂ An or else N ∩ An is a subgroup of N of index 2.

Example We show that if n ≥ 5 then the only normal subgroups of Σn

are the trivial subgroup, the alternating group An and Σn itself. Now these
subgroups are all normal subgroups of Σn. Moreover the trivial subgroup
and An are the only normal subgroups of Σn contained in An, since An is
simple when n ≥ 5 (Theorem 2.36).

Let N be a normal subgroup of Σn that is not contained in An. Then
N ∩An is a normal subgroup of An. Now if N ∩An were the trivial subgroup
then N would be a subgroup of Σn of order 2. But one can readily verify that
Σn contains no normal subgroup of order 2 unless n = 2, in which case A2

is itself the trivial group. It follows that N ∩ An = An, and hence N = Σn.
We have therefore shown that if n ≥ 5 then the only normal subgroups of
Σn are the trivial subgroup, the alternating group An and Σn itself.

Example We now show that the only normal subgroups of the symmetric
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group Σ4 are the trivial subgroup, the Klein Viergruppe V4, the alternating
group A4 and Σ4 itself.

The trivial group and the groups V4 and A4 are normal subgroups of Σ4.
Moreover they are the only normal subgroups of Σ4 contained in A4, since
they are the only normal subgroups of A4.

Let N be a normal subgroup of Σ4 that is not contained in A4. Then
N ∩A4 is a normal subgroup of A4. One can readily verify that Σ4 contains
no normal subgroup of order 2. It follows that V4 ⊂ N , since only normal
subgroups of A4 other than the trivial subgroup are the groups V4 and A4.
Now the only odd permutations in Σ4 are transpositions and cycles of order 4.
Moreover if N contains a cycle of order 4 then N contains a transposition,
since V4 ⊂ N and

(m1m2)(m3m4)(m1m2 m3m4) = (m2 m4)

for all cycles (m1 m2m3 m4) of order 4. It follows that if N is a normal
subgroup of Σ4 that is not contained in A4 then N must contain at least one
transposition. But then N contains all transpositions, and therefore N = Σ4.
This shows that the only normal subgroups of Σ4 are the trivial group, the
Klein Viergruppe V4, the alternating group A4 and Σ4 itself.

2.19 Finitely Generated Abelian Groups

Let H be a subgroup of the additive group Zn consisting of all n-tuples
of integers, with the operation of (vector) addition. A list b1,b2, . . . ,br of
elements of Zn is said to constitute an integral basis (or Z-basis) of H if the
following conditions are satisfied:

• the element m1b1 + m2b2 + · · · + mrbr belongs to H for all integers
m1,m2, . . . ,mr;

• given any element h of H, there exist uniquely determined integers
m1,m2, . . . ,mr such that h = m1b1 +m2b2 + · · ·+mrbr.

Note that elements b1,b2, . . . ,bn of Zn constitute an integral basis of Zn if
and only if every element of Zn is uniquely expressible as a linear combination
of b1,b2, . . . ,bn with integer coefficients. It follows from basic linear algebra
that the rows of an n × n matrix of integers constitute an integral basis of
Z
n if and only if the determinant of that matrix is ±1.

Theorem 2.37 Let H be a non-trivial subgroup of Zn. Then there exists
an integral basis b1,b2, . . . ,bn of Zn, a positive integer s, where s ≤ n, and
positive integers k1, k2, . . . , ks for which k1b1, k2b2, . . . , ksbs is an integral
basis of H.
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Proof We prove the result by induction on n. The result is clearly true
when n = 1, since every non-trivial subgroup of Z is of the form kZ for some
positive integer k. Suppose therefore that n > 1 and that the result holds
for all subgroups of Zn−1. We must show that the result then holds for all
subgroups H of Zn.

Let k1 be the smallest strictly positive integer for which there exists some
integral basis u1,u2, . . . ,un of Zn and some element of H of the form m1u1 +
m2u2 + · · ·+mnun where m1,m2, . . . ,mn are integers and mi = k1 for some
integer i satisfying 1 ≤ i ≤ n. Let u1,u2, . . . ,un be such a basis, with i = 1,
and let h0 be an element of H for which h0 = m1u1 + m2u2 + · · · + mnun,
where m1,m2, . . . ,mn are integers and m1 = k1.

We show that each coefficient mi is divisible by k1. Now, for each i,
there exist integers qi and ri such that mi = qik1 + ri and 0 ≤ ri < k1. Let
b1 = u1 +

∑n
i=2 qiui. Then b1,u2, . . . ,un is an integral basis of Zn and

h0 = k1b1 +
n∑
i=2

riui.

The choice of k1 now ensures that the coefficients ri cannot be strictly positive
(as they are less than k1), and therefore ri = 0 and mi = qik1 for i =
2, 3, . . . , n. Moreover h0 = k1b1.

Now let ϕ:Zn−1 → Z
n be the injective homomorphism sending each ele-

ment (m2,m3, . . . ,mn) of Zn−1 to
∑n

i=2 miui, and let H̃ = ϕ−1(H). Then,

given any element h of H, there exist an integer m and an element h̃ of Zn−1

such that h = mb1 + ϕ(h̃). Moreover m and h̃ are uniquely determined by
h, since b1,u2, . . . ,un is an integral basis of Zn. Let m = qk1 + r, where q
and r are integers and 0 ≤ r < k1. Then h− qh0 = rb1 + ϕ(h̃), where ϕ(h̃)
is expressible as a linear combination of u2, . . . ,un with integer coefficients.
The choice of k1 now ensures that r cannot be strictly positive, and therefore
r = 0. Then ϕ(h̃) ∈ H, and hence h̃ ∈ H̃. We conclude from this that, given
any element h of H, there exist an integer q and an element h̃ of H̃ such
that h = qk1b1 + ϕ(h̃). Moreover q and h̃ are uniquely determined by h.

Now the induction hypothesis ensures the existence of an integral basis
b̃2, b̃3, . . . , b̃n of Zn−1 for which there exist positive integers k2, k3, . . . , ks such
that k2b̃2, k3b̃3, . . . , ksb̃s is an integral basis of H̃. Let bi = ϕ(b̃i) for each
integer i between 2 and n. One can then readily verify that b1,b2, . . . ,bn is
an integral basis of Zn and k1b1, k2b2, . . . , ksbs is an integral basis of H, as
required.

An Abelian group G is generated by elements g1, g2, . . . , gn if and only if
every element of G is expressible in the form gm1

1 gm2
2 · · · gmnn for some integers

m1,m2, . . . ,mn.
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Lemma 2.38 A non-trivial Abelian group G is �nitely generated if and only
if there exists a positive integer n and some surjective homomorphism θ:Zn →
G.

Proof Let e1, e2, . . . , en be the integral basis of Zn with e1 = (1, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). If there exists a surjective homo-
morphism θ:Zn → G then G is generated by g1, g2, . . . , gn, where gi = θ(ei)
for i = 1, 2, . . . , n. Conversely if G is generated by g1, g2, . . . , gn then there is
a surjective homomorphism θ:Zn → G that sends (m1,m2, . . . ,mn) ∈ Zn to
gm1

1 gm2
2 · · · gmnn .

Theorem 2.39 Let G be a non-trivial �nitely generated Abelian group. Then
there exist a positive integer n and a non-negative integer s between 0 and n,
such that if s = 0 then G ∼= Z

n, and if s > 0 then there exist positive integers
k1, k2, . . . , ks such that

G ∼= Ck1 × Ck2 × · · · × Cks × Zn−s,

where Cki is a cyclic group of order ki for i = 1, 2, . . . , s.

Proof There exists a positive integer n and some surjective homomorphism
θ:Zn → G, since G is finitely-generated. Let H be the kernel of θ. If
H is trivial then the homomorphism θ is an isomorphism between Zn and
G. If H is non-trivial then G is isomorphic to Zn/H, and there exists an
integral basis b1,b2, . . . ,bn of Zn, a positive integer s, where s ≤ n, and
positive integers k1, k2, . . . , ks for which k1b1, k2b2, . . . , ksbs is an integral
basis of H (Theorem 2.37). Then the group Zn/H, and thus G, is isomorphic
to Ck1 × Ck2 × · · · × Cks × Zn−s, where Ci is a cyclic group of order ki
for i = 1, 2, . . . , s. Indeed there is a well-defined homomorphism ϕ:Zn →
Ck1 × Ck2 × · · · × Cks × Zn−s which sends each element

m1b1 +m2b2 + · · ·+mnbn

of Zn to (am1
1 , am2

2 , . . . , amss ,ms+1, . . . ,mn), where ai is a generator of the
cyclic group Ci for i = 1, 2, . . . , s. The homomorphism ϕ is surjective, and its
kernel is the subgroup H. Therefore G ∼= Z

n/H ∼= Ck1×Ck2×· · ·×Cks×Zn−s,
as required.

Corollary 2.40 Let G be a non-trivial �nite Abelian group. Then there exist
positive integers k1, k2, . . . , kn such that G ∼= Ck1×Ck2×· · ·×Ckn, where Cki
is a cyclic group of order ki for i = 1, 2, . . . , n.
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With some more work it is possible to show that the positive integers
k1, k2, . . . , ks in Theorem 2.39 may be chosen such that k1 > 1 and ki−1

divides ki for i = 2, 3, . . . , s, and that the Abelian group is then determined
up to isomorphism by the integer n and the sequence of positive integers
k1, k2, . . . , ks.

2.20 The Class Equation of a Finite Group

Definition The centre Z(G) of a group G is the subgroup of G defined by

Z(G) = {g ∈ G : gh = hg for all h ∈ G}.

One can verify that the centre of a group G is a normal subgroup of G.
Let G be a finite group, and let Z(G) be the centre of G. Then G \Z(G)

is a disjoint union of conjugacy classes. Let r be the number of conjugacy
classes contained in G\Z(G), and let n1, n2, . . . , nr be the number of elements
in these conjugacy classes. Then ni > 1 for all i, since the centre Z(G) of
G is the subgroup of G consisting of those elements of G whose conjugacy
class contains just one element. Now the group G is the disjoint union of its
conjugacy classes, and therefore

|G| = |Z(G)|+ n1 + n2 + · · ·+ nr.

This equation is referred to as the class equation of the group G.

Definition Let g be an element of a group G. The centralizer C(g) of g is
the subgroup of G defined by C(g) = {h ∈ G : hg = gh}.

Proposition 2.41 Let G be a �nite group, and let p be a prime number.
Suppose that pk divides the order of G for some positive integer k. Then
either pk divides the order of some proper subgroup of G, or else p divides
the order of the centre of G.

Proof Choose elements g1, g2, . . . , gr of G\Z(G), where Z(G) is the centre of
G, such that each conjugacy class included in G \Z(G) contains exactly one
of these elements. Let ni be the number of elements in the conjugacy class
of gi and let C(gi) be the centralizer of gi for each i. Then C(gi) is a proper
subgroup of G, and |G| = ni|C(gi)|. Thus if pk divides |G| but does not divide
the order of any proper subgroup of G then p must divide ni for i = 1, 2, . . . , r.
Examination of the class equation |G| = |Z(G)| + n1 + n2 + · · · + nr now
shows that p divides |Z(G)|, as required.
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2.21 Cauchy’s Theorem

Theorem 2.42 (Cauchy) Let G be an �nite group, and let p be a prime
number that divides the order of G. Then G contains an element of order p.

Proof We prove the result by induction on the order of G. Thus suppose
that every finite group whose order is divisible by p and less than |G| contains
an element of order p. If p divides the order of some proper subgroup of G
then that subgroup contains the required element of order p. If p does not
divide the order of any proper subgroup of G then Proposition 2.41 ensures
that p divides the order of the centre Z(G) of G, and thus Z(G) cannot be
a proper subgroup of G. But then G = Z(G) and the group G is Abelian.

Thus let G be an Abelian group whose order is divisible by p, and let
H be a proper subgroup of G that is not contained in any larger proper
subgroup. If |H| is divisible by p then the induction hypothesis ensures that
H contains the required element of order p, since |H| < |G|. Suppose then
that |H| is not divisible by p. Choose g ∈ G \ H, and let C be the cyclic
subgroup of G generated by g. Then HC = G, since HC 6= H and HC
is a subgroup of G containing H. It follows from the First Isomorphism
Theorem (Theorem 2.23) that G/H ∼= C/H ∩ C. Now p divides |G/H|,
since |G/H| = |G|/|H| and p divides |G| but not |H|. Therefore p divides
|C|. Thus if m = |C|/p then gm is the required element of order p. This
completes the proof of Cauchy’s Theorem.

2.22 The Structure of p-Groups

Definition Let p be a prime number. A p-group is a finite group whose
order is some power pk of p.

Lemma 2.43 Let p be a prime number, and let G be a p-group. Then there
exists a normal subgroup of G of order p that is contained in the centre of G.

Proof Let |G| = pk. Then pk divides the order of G but does not divide the
order of any proper subgroup of G. It follows from Proposition 2.41 that p
divides the order of the centre of G. It then follows from Cauchy’s Theorem
(Theorem 2.42) that the centre of G contains some element of order p. This
element generates a cyclic subgroup of order p, and this subgroup is normal
since its elements commute with every element of G.

Proposition 2.44 Let G be a p-group, where p is some prime number, and
let H be a proper subgroup of G. Then there exists some subgroup K of G
such that H /K and K/H is a cyclic group of order p.
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Proof We prove the result by induction on the order of G. Thus suppose
that the result holds for all p-groups whose order is less than that of G. Let
Z be the centre of G. Then ZH is a well-defined subgroup of G, since Z is
a normal subgroup of G.

Suppose that ZH 6= H. Then H is a normal subgroup of ZH. The
quotient group ZH/H is a p-group, and contains a subgroup K1 of order p
(Lemma 2.43). Let K = {g ∈ ZH : gH ∈ K1}. Then H/K and K/H ∼= K1,
and therefore K is the required subgroup of G.

Finally suppose that ZH = H. Then Z ⊂ H. Let H1 = {hZ : h ∈ H}.
Then H1 is a subgroup of G/Z. But G/Z is a p-group, and |G/Z| < |G|,
since |Z| > p (Lemma 2.43). The induction hypothesis ensures the existence
of a subgroup K1 of G/Z such that H1 / K1 and K1/H1 is cyclic of order p.
Let K = {g ∈ G : gZ ∈ K1}. Then H / K and K/H ∼= K1/H1. Thus K is
the required subgroup of G.

Repeated applications of Proposition 2.44 yield the following result.

Corollary 2.45 Let G be a �nite group whose order is a power of some
prime number p. Then there exist subgroups G0, G1, . . . , Gn of G, where G0

is the trivial subgroup and Gn = G, such that Gi−1 / Gi and Gi/Gi−1 is a
cyclic group of order p for i = 1, 2, . . . , n.

2.23 The Sylow Theorems

Definition Let G be a finite group, and let p be a prime number dividing
the order |G| of G. A p-subgroup of G is a subgroup whose order is some
power of p. A Sylow p-subgroup of G is a subgroup whose order is pk, where
k is the largest natural number for which pk divides |G|.

Theorem 2.46 (First Sylow Theorem) Let G be a �nite group, and let p be a
prime number dividing the order of G. Then G contains a Sylow p-subgroup.

Proof We prove the result by induction on the order of G. Thus suppose
that all groups whose order is less than that of G contain the required Sylow
p-subgroups. Let k be the largest positive integer for which pk divides |G|.
If pk divides the order of some proper subgroup H of G then the induction
hypothesis ensures that H contains the required Sylow p-subgroup of order
pk. If pk does not divide the order of any proper subgroup of G then p
divides the order of the centre Z(G) of G (Proposition 2.41). It follows from
Cauchy’s Theorem (Theorem 2.42) that Z(G) contains an element of order
p, and this element generates a normal subgroup N of G of order p. The
induction hypothesis then ensures that G/N has a Sylow p-subgroup L of
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order pk−1, since |G/N | = |G|/p. Let K = {g ∈ G : gN ∈ L}. Then
|K| = p|L| = pk, and thus K is the required Sylow p-subgroup of G.

Theorem 2.47 (Second Sylow Theorem) Let G be a �nite group, and let
p be a prime number dividing the order of G. Then all Sylow p-subgroups
of G are conjugate, and any p-subgroup of G is contained in some Sylow p-
subgroup of G. Moreover the number of Sylow p-subgroups in G divides the
order of |G| and is congruent to 1 modulo p.

Proof Let K be a Sylow p-subgroup of G, and let X be the set of left cosets
of K in G. Let H be a p-subgroup of G. Then H acts on X on the left,
where h(gK) = hgK for all h ∈ H and g ∈ G. Moreover h(gK) = gK if and
only if g−1hg ∈ K. Thus an element gK of X is fixed by H if and only if
g−1Hg ⊂ K.

Let |G| = pkm, where k and m are positive integers and m is coprime to
p. Then |K| = pk. Now the number of left cosets of K in G is |G|/|K|. Thus
the set X has m elements. Now the number of elements in any orbit for the
action of H on X divides the order of H, since it is the index in H of the
stabilizer of some element of that orbit (Lemma 2.26). But then the number
of elements in each orbit must be some power of p, since H is a p-group.
Thus if an element of X is not fixed by H then the number of elements in its
orbit is divisible by p. But X is a disjoint union of orbits under the action
of H on X. Thus if m′ denotes the number of elements of X that are fixed
by H then m−m′ is divisible by p.

Now m is not divisible by p. It follows that m′ 6= 0, and m′ is not divisible
by p. Thus there exists at least one element g ofG such that g−1Hg ⊂ K. But
then H is contained in the Sylow p-subgroup gKg−1. Thus every p-subgroup
is contained in a Sylow p-subgroup of K, and this Sylow p-subgroup is a
conjugate of the given Sylow p-subgroup K. In particular any two Sylow
p-subgroups are conjugate.

It only remains to show that the number of Sylow p-subgroups in G
divides the order of |G| and is congruent to 1 modulo p. Now choosing the
p-subgroup H of G to be the Sylow p-subgroup K itself enables us to deduce
that g−1Kg = K for some g ∈ G if and only if gK is a fixed point for the
action of K on X. But the number of elements g of G for which gK is a
fixed point is m′|K|, where m′ is the number of fixed points in X. It follows
that the number of elements g of G for which g−1Kg = K is pkm′. But every
Sylow p-subgroup of G is of the form g−1Kg for some g ∈ G. It follows that
the number n of Sylow p-subgroups in G is given by n = |G|/pkm′ = m/m′.
In particular n divides |G|. Now we have already shown that m − m′ is
divisible by p. It follows that m′ is coprime to p, since m is coprime to p.
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Also m −m′ is divisible by m′, since (m −m′)/m′ = n − 1. Putting these
results together, we see that m−m′ is divisible by m′p, and therefore n− 1
is divisible by p. Thus n divides |G| and is congruent to 1 modulo p, as
required.

2.24 Solvable Groups

Definition A group G is said to be solvable (or soluble) if there exists a finite
sequence G0, G1, . . . , Gn of subgroups of G, where G0 = {1} and Gn = G,
such that Gi−1 is normal in Gi and Gi/Gi−1 is Abelian for i = 1, 2, . . . , n.

Example The symmetric group Σ4 is solvable. Indeed let V4 be the Klein
Viergruppe consisting of the identity permutation ι and the permutations
(12)(34), (13)(24) and (14)(23), and letA4 be the alternating group consisting
of all even permutations of {1, 2, 3, 4}. Then {ι} / V4 /A4 /Σ4, V4 is Abelian,
A4/V4 is cyclic of order 3, and Σ4/A4 is cyclic of order 2.

Lemma 2.48 Let G be a group, let H1 and H2 be subgroups of G, where
H1 / H2, and let J1 = H1 ∩ N , J2 = H2 ∩ N , K1 = H1N/N and K2 =
H2N/N , where N is some normal subgroup of G. Then J1 / J2 and K1 /K2.
Moreover there exists a normal subgroup of H2/H1 isomorphic to J2/J1, and
the quotient of H2/H1 by this normal subgroup is isomorphic to K2/K1.

Proof It is a straightforward exercise to verify that J1 /J2 and K1 /K2. Let
θ:H2 → K2 be the surjective homomorphism sending h ∈ H2 to the coset hN .
Now θ induces a well-defined surjective homomorphism ψ:H2/H1 → K2/K1,
since θ(H1) ⊂ K1. Also θ−1(K1) = H2∩ (H1N). But H2∩ (H1N) = H1(H2∩
N), for if a ∈ H1, b ∈ N and ab ∈ H2 then b ∈ H2 ∩N . Therefore

kerψ = θ−1(K1)/H1 = H1(H2 ∩N)/H1
∼= H2 ∩N/H1 ∩N = J2/J1

by the First Isomorphism Theorem (Theorem 2.23). Moreover the quotient
of H2/H1 by the normal subgroup kerψ is isomorphic to the image K2/K1

of ψ. Thus kerψ is the required normal subgroup of H2/H1.

Proposition 2.49 Let G be a group, and let H be a subgroup of G. Then

(i) if G is solvable then any subgroup H of G is solvable;

(ii) if G is solvable then G/N is solvable for any normal subgroup N of G;

(iii) if N is a normal subgroup of G and if both N and G/N are solvable
then G is solvable.
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Proof Suppose that G is solvable. Let G0, G1, . . . , Gm be a finite sequence
of subgroups of G, where G0 = {1}, Gn = G, and Gi−1 / Gi and Gi/Gi−1 is
Abelian for i = 1, 2, . . . ,m.

We first show that the subgroup H is solvable. Let Hi = H ∩ Gi for
i = 0, 1, . . . ,m. Then H0 = {1} and Hm = H. If u ∈ Hi and v ∈ Hi−1 then
uvu−1 ∈ H, since H is a subgroup of G. Also uvu−1 ∈ Gi−1, since u ∈ Gi−1,
v ∈ Gi and Gi−1 is normal in Gi. Therefore uvu−1 ∈ Hi−1. Thus Hi−1 is a
normal subgroup of Hi for i = 1, 2, . . . ,m. Moreover

Hi

Hi−1

=
Gi ∩H

Gi−1 ∩ (Gi ∩H)
=
Gi−1(Gi ∩H)

Gi−1

by the First Isomorphism Theorem (Theorem 2.23), and thus Hi/Hi−1 is
isomorphic to a subgroup of the Abelian group Gi/Gi−1. It follows that
Hi/Hi−1 must itself be an Abelian group. We conclude therefore that the
subgroup H of G is solvable.

Now let N be a normal subgroup of G, and let Ki = GiN/N for all i.
Then K0 is the trivial subgroup of G/N and Km = G/N . It follows from
Lemma 2.48 that Ki−1 / Ki and Ki/Ki−1 is isomorphic to the quotient of
Gi/Gi−1 by some normal subgroup. But a quotient of any Abelian group
must itself be Abelian. Thus each quotient group Ki/Ki−1 is Abelian, and
thus G/N is solvable.

Finally suppose that G is a group, N is a normal subgroup of G and
both N and G/N are solvable. We must prove that G is solvable. Now the
solvability of N ensures the existence of a finite sequence G0, G1, . . . , Gm of
subgroups of N , where G0 = {1}, Gm = N , and Gi−1 / Gi and Gi/Gi−1 is
Abelian for i = 1, 2, . . . ,m. Also the solvability of G/N ensures the existence
of a finite sequence K0, K1, . . . , Kn of subgroups of G/N , where K0 = N/N ,
Kn = G/N , and Ki−1 / Ki and Ki/Ki−1 is Abelian for i = 1, 2, . . . , n.
Let Gm+i be the preimage of Ki under the the quotient homomorphism
ν:G → G/N , for i = 1, 2, . . . , n. The Second Isomorphism Theorem (The-
orem 2.24) ensures that Gm+i/Gm+i−1

∼= Ki/Ki−1 for all i > 0. Therefore
G0, G1, . . . , Gm+n is a finite sequence of subgroups of G, where G0 = {1},
Gn = G, and Gi−1 / Gi and Gi/Gi−1 is Abelian for i = 1, 2, . . . ,m+ n. Thus
the group G is solvable, as required.

Example The alternating group An is simple for n ≥ 5 (see Theorem 2.36).
Moreover the definition of solvable groups ensures that that any simple solv-
able group is cyclic, and An is not cyclic when n ≥ 5. Therefore An is
not solvable when n ≥ 5. It then follows from Proposition 2.49 that the
symmetric group Σn is not solvable when n ≥ 5.
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